Turn off MathJax
Article Contents
DENG Yuanyong, TIAN Hui, JIANG Jie, YANG Shuhong, LI Hao, CAMERON Robert, GIZON Laurent, HARRA Louise, WIMMER-SCHWEINGRUBER Robert F., AUCHÈRE Frédéric, BAI Xianyong, BELLOT RUBIO Luis, CHEN Linjie, CHEN Pengfei, CHITTA Lakshmi Pradeep, DAVIES Jackie, FAVATA Fabio, FENG Li, FENG Xueshang, GAN Weiqun, HASSLER Don, HE Jiansen, HOU Junfeng, HOU Zhenyong, JIN Chunlan, LI Wenya, LIN Jiaben, NANDY Dibyendu, PANT Vaibhav, ROMOLI Marco, SAKAO Taro, SAYAMANTHULA Krishna Prasad, SHEN Fang, SU Yang, TORIUMI Shin, TRIPATHI Durgesh, WANG Linghua, WANG JingJing, XIA Lidong, XIONG Ming, YAN Yihua, YANG Liping, YANG Shangbin, ZHANG Mei, ZHOU Guiping, ZHU Xiaoshuai, WANG Jingxiu, WANG Chi. Probing Solar Polar Regions. Chinese Journal of Space Science, 2025, 45(4): 1-30 doi: 10.11728/cjss2025.04.2025-0054
Citation: DENG Yuanyong, TIAN Hui, JIANG Jie, YANG Shuhong, LI Hao, CAMERON Robert, GIZON Laurent, HARRA Louise, WIMMER-SCHWEINGRUBER Robert F., AUCHÈRE Frédéric, BAI Xianyong, BELLOT RUBIO Luis, CHEN Linjie, CHEN Pengfei, CHITTA Lakshmi Pradeep, DAVIES Jackie, FAVATA Fabio, FENG Li, FENG Xueshang, GAN Weiqun, HASSLER Don, HE Jiansen, HOU Junfeng, HOU Zhenyong, JIN Chunlan, LI Wenya, LIN Jiaben, NANDY Dibyendu, PANT Vaibhav, ROMOLI Marco, SAKAO Taro, SAYAMANTHULA Krishna Prasad, SHEN Fang, SU Yang, TORIUMI Shin, TRIPATHI Durgesh, WANG Linghua, WANG JingJing, XIA Lidong, XIONG Ming, YAN Yihua, YANG Liping, YANG Shangbin, ZHANG Mei, ZHOU Guiping, ZHU Xiaoshuai, WANG Jingxiu, WANG Chi. Probing Solar Polar Regions. Chinese Journal of Space Science, 2025, 45(4): 1-30 doi: 10.11728/cjss2025.04.2025-0054

Probing Solar Polar Regions

doi: 10.11728/cjss2025.04.2025-0054 cstr: 32142.14.cjss.2025-0054
Funds:  国家重点研发计划项目 (2022YFF0503800), 国家自然科学基金项目 (12425301, 12425305, 12473051)和太空探源专项共同资助
More Information
  • Author Bio:

    male, was born in Ziyang, Sichuan in August 1965. He is a Professor at the National Astronomical Observatories, Chinese Academy of Sciences and the Director of the Huairou Solar Observing Station. He is engaged in solar physics research and the development of astronomical instruments, and is the proposer of the Solar Polar Orbit Exploration Project. E-mail: dyy@nao.cas.cn

    male, was born in Qichun, Hubei Province in August 1982. He is a professor at the School of Earth and Space Sciences of Peking University. He primarily conducts research in solar coronal heating, coronal magnetic field measurements, observations and modeling of stellar coronal mass ejections. E-mail: huitian@pku.edu.cn

  • Received Date: 2025-04-09
  • Rev Recd Date: 2025-07-01
  • Available Online: 2025-07-02
  • The magnetic fields and dynamical processes in the solar polar regions play a crucial role in the solar magnetic cycle and in supplying mass and energy to the fast solar wind, ultimately being vital in controlling solar activities and driving space weather. Despite numerous efforts to explore these regions, to date no imaging observations of the Sun’s poles have been achieved from vantage points out of the ecliptic plane, leaving their behavior and evolution poorly understood. This observation gap has left three top-level scientific questions unanswered: How does the solar dynamo work and drive the solar magnetic cycle? What drives the fast solar wind? How do space weather processes globally originate from the Sun and propagate throughout the solar system? The Solar Polar-orbit Observatory (SPO) mission, a solar polar exploration spacecraft, is proposed to address these three unanswered scientific questions by imaging the Sun’s poles from high heliolatitudes. In order to achieve its scientific goals, SPO will carry six remote-sensing and four in-situ instruments to measure the vector magnetic fields and Doppler velocity fields in the photosphere, to observe the Sun in the extreme ultraviolet, X-ray, and radio wavelengths, to image the corona and the heliosphere up to 45 Rs, and to perform in-situ detection of magnetic fields, and low- and high-energy particles in the solar wind. The SPO mission is capable of providing critical vector magnetic fields and Doppler velocities of the polar regions to advance our understanding of the origin of the solar magnetic cycle, providing unprecedented imaging observations of the solar poles alongside in-situ measurements of charged particles and magnetic fields from high heliolatitudes to unveil the mass and energy supply that drive the fast solar wind, and providing observational constraints for improving our ability to model and predict the three-dimensional (3D) structures and propagation of space weather events.

     

  • loading
  • [1]
    DENG Y Y, ZHOU G P, DAI S W, et al. Solar polar-orbit observatory[J]. Chinese Science Bulletin, 2023, 68(4): 298-308 doi: 10.1360/TB-2022-0674
    [2]
    JUDGE P. The Sun: A Very Short Introduction[M]. Oxford: Oxford University Press, 2020
    [3]
    CAMERON R, SCHÜSSLER M. The crucial role of surface magnetic fields for the solar dynamo[J]. Science, 2015, 347(6228): 1333-1335 doi: 10.1126/science.1261470
    [4]
    SCHATTEN K H, SCHERRER P H, SVALGAARD L, et al. Using Dynamo Theory to predict the sunspot number during Solar Cycle 21[J]. Geophysical Research Letters, 1978, 5(5): 411-414 doi: 10.1029/GL005i005p00411
    [5]
    CHOUDHURI A R, CHATTERJEE P, JIANG J. Predicting solar cycle 24 with a solar dynamo model[J]. Physical Review Letters, 2007, 98(13): 131103 doi: 10.1103/PhysRevLett.98.131103
    [6]
    PETRIE G J D, HAISLMAIER K J. Low-latitude coronal holes, decaying active regions, and global coronal magnetic structure[J]. Astrophysical Journal, 2013, 775(2): 100 doi: 10.1088/0004-637X/775/2/100
    [7]
    BROUSSARD R M, SHEELEY JR N R, TOUSEY R, et al. A survey of coronal holes and their solar wind associations throughout sunspot cycle 20[J]. Solar Physics, 1978, 56(1): 161-183 doi: 10.1007/BF00152641
    [8]
    BABCOCK H W, BABCOCK H D. The sun's magnetic field, 1952-1954[J]. Astrophysical Journal, 1955, 121: 349 doi: 10.1086/145994
    [9]
    DENG Y Y, WANG J X, AI G X. Vector magnetic field in solar polar region[J]. Science in China Series A: Mathematics, 1999, 42(10): 1096-1102 doi: 10.1007/BF02889512
    [10]
    AI G X, HU Y F. Propose for a solar magnetic field telescope and its working theorem[J]. Publications of the Beijing Astronomical Observatory, 1986, 8: 1-10
    [11]
    KOSUGI T, MATSUZAKI K, SAKAO T, et al. The Hinode (solar-b) mission: an overview[J]. Solar Physics, 2007, 243(1): 3-17 doi: 10.1007/s11207-007-9014-6
    [12]
    TSUNETA S, ICHIMOTO K, KATSUKAWA Y, et al. The solar optical telescope for the Hinode mission: an overview[J]. Solar Physics, 2008, 249(2): 167-196 doi: 10.1007/s11207-008-9174-z
    [13]
    TSUNETA S, ICHIMOTO K, KATSUKAWA Y, et al. The magnetic landscape of the sun's polar region[J]. The Astrophysical Journal, 2008, 688(2): 1374-1381 doi: 10.1086/592226
    [14]
    JIN C L, WANG J X. Vector magnetic fields of a solar polar region[J]. The Astrophysical Journal, 2011, 732(1): 4 doi: 10.1088/0004-637X/732/1/4
    [15]
    JIN C L, ZHOU G P, ZHANG Y Z, et al. The bipolar magnetic emergence in the solar polar region[J]. The Astrophysical Journal Letters, 2020, 889(1): L26 doi: 10.3847/2041-8213/ab65bf
    [16]
    YANG S H, JIANG J, WANG Z F, et al. Long-term variation of the solar polar magnetic fields at different latitudes[J]. Research in Astronomy and Astrophysics, 2024, 24(7): 0750153
    [17]
    YANG S H, JIANG J, WANG Z F, et al. Meridional flow in the solar polar caps revealed by magnetic field observation and simulation[J]. The Astrophysical Journal, 2024, 970(2): 183 doi: 10.3847/1538-4357/ad61e2
    [18]
    JIANG J, CAMERON R H, SCHÜSSLER M. Effects of the scatter in sunspot group tilt angles on the large-scale magnetic field at the solar surface[J]. The Astrophysical Journal, 2014, 791(1): 5 doi: 10.1088/0004-637X/791/1/5
    [19]
    RAOUAFI N E, STENBORG G. Role of transients in the sustainability of solar coronal plumes[J]. The Astrophysical Journal, 2014, 787(2): 118 doi: 10.1088/0004-637X/787/2/118
    [20]
    KUMAR P, KARPEN J T, URITSKY V M, et al. Quasi-periodic energy release and jets at the base of solar coronal plumes[J]. The Astrophysical Journal, 2022, 933(1): 21 doi: 10.3847/1538-4357/ac6c24
    [21]
    RAOUAFI N E, STENBORG G, Seaton, D B, et al. Magnetic Reconnection as the Driver of the Solar Wind[J]. The Astrophysical Journal, 2023, 945(1): 28 doi: 10.3847/1538-4357/acaf6c
    [22]
    TIAN H, DELUCA E E, CRANMER S R, et al. Prevalence of small-scale jets from the networks of the solar transition region and chromosphere[J]. Science, 2014, 346(6207): 1255711 doi: 10.1126/science.1255711
    [23]
    TRIPATHI D, NIVED V N, SOLANKI S K. Coronal heating and solar wind formation in quiet sun and coronal holes: a unified scenario[J]. The Astrophysical Journal, 2021, 908(1): 28 doi: 10.3847/1538-4357/abcc6b
    [24]
    Upendran, V. & Tripathi, D. , On the Formation of Solar Wind and Switchbacks, and Quiet Sun Heating [J]. The Astrophysical Journal, 2022, 926, 138
    [25]
    CHITTA L P, ZHUKOV A N, BERGHMANS D, et al. Picoflare jets power the solar wind emerging from a coronal hole on the Sun[J]. Science, 2023, 381(6660): 867-872 doi: 10.1126/science.ade5801
    [26]
    CHITTA L P, SOLANKI S K, DEL TORO INIESTA J C, et al. Fleeting small-scale surface magnetic fields build the quiet-sun corona[J]. The Astrophysical Journal, 2023, 956(1): L1 doi: 10.3847/2041-8213/acf136
    [27]
    CIRTAIN J W, GOLUB L, LUNDQUIST L, et al. Evidence for Alfvén waves in solar X-ray jets[J]. Science, 2007, 318(5856): 1580-1582 doi: 10.1126/science.1147050
    [28]
    TIAN H, MCINTOSH S W, HABBAL S R, et al. Observation of high-speed outflow on plume-like structures of the quiet sun and coronal holes with solar dynamics observatory / atmospheric imaging assembly[J]. The Astrophysical Journal, 2011, 736(2): 130 doi: 10.1088/0004-637X/736/2/130
    [29]
    DE PONTIEU B, MCINTOSH S W, CARLSSON M, et al. Chromospheric Alfvénic waves strong enough to power the solar wind[J]. Science, 2007, 318(5856): 1574-1577 doi: 10.1126/science.1151747
    [30]
    MCINTOSH S W, DE PONTIEU B, CARLSSON M, et al. Alfvénic waves with sufficient energy to power the quiet solar corona and fast solar wind[J]. Nature, 2011, 475(7357): 477-480 doi: 10.1038/nature10235
    [31]
    DOMINGO V, FLECK B, POLAND A I. The SOHO mission: an overview[J]. Solar Physics, 1995, 162(1): 1-37
    [32]
    HASSLER D M, DAMMASCH I E, LEMAIRE P, et al. Solar wind outflow and the chromospheric magnetic network[J]. Science, 1999, 283(5403): 810-813 doi: 10.1126/science.283.5403.810
    [33]
    TU C Y, ZHOU C, MARSCH E, et al. Solar wind origin in coronal funnels[J]. Science, 2005, 308(5721): 519-523 doi: 10.1126/science.1109447
    [34]
    TIAN H, HARRA L, BAKER D, et al. Upflows in the upper solar atmosphere[J]. Solar Physics, 2021, 296(3): 47 doi: 10.1007/s11207-021-01792-7
    [35]
    TIAN H, TU C Y, MARSCH E, et al. The nascent fast solar wind observed by the EUV imaging spectrometer on board Hinode[J]. The Astrophysical Journal, 2010, 709(1): L88-L93 doi: 10.1088/2041-8205/709/1/L88
    [36]
    HARRA L, BAKER D, EDWARDS S J, et al. A study of the coronal non-thermal velocity in polar regions during the rise from solar minimum to solar maximum in cycle 24[J]. Solar Physics, 2015, 290(11): 3203-3220 doi: 10.1007/s11207-015-0649-4
    [37]
    TU C Y, MARSCH E, WILHELM K, et al. Ion temperatures in a solar polar coronal hole observed by SUMER on SOHO[J]. The Astrophysical Journal, 1998, 503(1): 475-482 doi: 10.1086/305982
    [38]
    WENZEL K P, MARSDEN R G, PAGE D E, et al. The ULYSSES mission[J]. Astronomy and Astrophysics Supplement, 1992, 92(2): 207
    [39]
    MÜLLER D, ST CYR O C, ZOUGANELIS I, et al. The solar orbiter mission. Science overview[J]. Astronomy :Times New Roman;">& Astrophysics, 2020, 642: A1
    [40]
    TEMMER M. Space weather: the solar perspective[J]. Living Reviews in Solar Physics, 2021, 18(1): 4 doi: 10.1007/s41116-021-00030-3
    [41]
    MCCOMAS D J, EBERT R W, ELLIOTT H A, et al. Weaker solar wind from the polar coronal holes and the whole Sun[J]. Geophysical Research Letters, 2008, 35(18): L18103
    [42]
    BALOGH A, BOTHMER V, CROOKER N U, et al. The solar origin of corotating interaction regions and their formation in the inner heliosphere[J]. Space Science Reviews, 1999, 89(1): 141-178
    [43]
    GEISS J, GLOECKLER G, VON STEIGER R, et al. The southern high-speed stream: results from the SWICS instrument on Ulysses[J]. Science, 1995, 268(5213): 1033-1036 doi: 10.1126/science.7754380
    [44]
    WIMMER-SCHWEINGRUBER R F, VON STEIGER R, PAERLI R. Solar wind stream interfaces in corotating interaction regions: SWICS/Ulysses results[J]. Journal of Geophysical Research: Space Physics, 1997, 102(A8): 17407-17417 doi: 10.1029/97JA00951
    [45]
    FISK L A, JOKIPII J R. Mechanisms for latitudinal transport of energetic particles in the heliosphere[J]. Space Science Reviews, 1999, 89(1): 115-124
    [46]
    ROCHUS P, AUCHÈRE F, BERGHMANS D, et al. The solar orbiter EUI instrument: the extreme ultraviolet Imager[J]. Astronomy :Times New Roman;">& Astrophysics, 2020, 642: A8
    [47]
    SPICE CONSORTIUM, ANDERSON M, APPOURCHAUX T, et al. The solar orbiter SPICE instrument. An extreme UV imaging spectrometer[J]. Astronomy :Times New Roman;">& Astrophysics, 2020, 642: A14
    [48]
    SOLANKI S K, DEL TORO INIESTA J C, WOCH J, et al. The polarimetric and helioseismic imager on Solar Orbiter[J]. Astronomy :Times New Roman;">& Astrophysics, 2020, 642: A11
    [49]
    KRUCKER S, HURFORD G J, GRIMM O, et al. The spectrometer/telescope for imaging X-rays (STIX)[J]. Astronomy :Times New Roman;">& Astrophysics, 2020, 642: A15
    [50]
    ANTONUCCI E, ROMOLI M, ANDRETTA V, et al. Metis: the Solar Orbiter visible light and ultraviolet coronal imager[J]. Astronomy :Times New Roman;">& Astrophysics, 2020, 642: A10
    [51]
    HOWARD R A, VOURLIDAS A, COLANINNO R C, et al. The Solar Orbiter Heliospheric Imager (SoloHI)[J]. Astronomy :Times New Roman;">& Astrophysics, 2020, 642: A13
    [52]
    OWEN C J, BRUNO R, LIVI S, et al. The Solar Orbiter Solar Wind Analyser (SWA) suite[J]. Astronomy :Times New Roman;">& Astrophysics, 2020, 642: A16
    [53]
    MAKSIMOVIC M, BALE S D, CHUST T, et al. The Solar Orbiter Radio and Plasma Waves (RPW) instrument[J]. Astronomy :Times New Roman;">& Astrophysics, 2020, 642: A12
    [54]
    HORBURY T S, O’BRIEN H, CARRASCO BLAZQUEZ I, et al. The Solar Orbiter magnetometer[J]. Astronomy :Times New Roman;">& Astrophysics, 2020, 642: A9
    [55]
    RODRÍGUEZ-PACHECO J, WIMMER-SCHWEINGRUBER R F, MASON G M, et al. The Energetic Particle Detector. Energetic particle instrument suite for the Solar Orbiter mission[J]. Astronomy :Times New Roman;">& Astrophysics, 2020, 642: A77
    [56]
    BERGHMANS D, AUCHÈRE F, LONG D M, et al. Extreme-UV quiet Sun brightenings observed by the Solar Orbiter/EUI[J]. Astronomy :Times New Roman;">& Astrophysics, 2021, 656: L4
    [57]
    BERGHMANS D, ANTOLIN P, AUCHÈRE F, et al. First perihelion of EUI on the Solar Orbiter mission[J]. Astronomy :Times New Roman;">& Astrophysics, 2023, 675: A110
    [58]
    LOESCHL P, VALORI G, HIRZBERGER J, et al. A first rapid synoptic magnetic field map using SDO/HMI and SO/PHI data[J]. Astronomy :Times New Roman;">& Astrophysics, 2024, 681: A59
    [59]
    RIVERA Y J, BADMAN S T, STEVENS M L, et al. In situ observations of large-amplitude Alfvén waves heating and accelerating the solar wind[J]. Science, 2024, 385(6712): 962-966 doi: 10.1126/science.adk6953
    [60]
    HARRA L, ANDRETTA V, APPOURCHAUX T, et al. A journey of exploration to the polar regions of a star: probing the solar poles and the heliosphere from high helio-latitude[J]. Experimental Astronomy, 2022, 54(2): 157-183
    [61]
    PETRIE G J D. Solar magnetism in the polar regions[J]. Living Reviews in Solar Physics, 2015, 12(1): 5 doi: 10.1007/lrsp-2015-5
    [62]
    GUO W, JIANG J, WANG J X. A dynamo-based prediction of solar cycle 25[J]. Solar Physics, 2021, 296(9): 136 doi: 10.1007/s11207-021-01878-2
    [63]
    WANG Y M, SHEELEY JR N R, NASH A G. A new solar cycle model including meridional circulation[J]. The Astrophysical Journal, 1991, 383: 431 doi: 10.1086/170800
    [64]
    CHOUDHURI A R, SCHÜSSLER M, DIKPATI M. The solar dynamo with meridional circulation[J]. Astronomy and Astrophysics, 1995, 303: L29
    [65]
    HAZRA G, KARAK B B, CHOUDHURI A R. Is a deep one-cell meridional circulation essential for the flux transport solar dynamo?[J]. The Astrophysical Journal, 2014, 782(2): 93 doi: 10.1088/0004-637X/782/2/93
    [66]
    SCHAD A, TIMMER J, ROTH M. Global helioseismic evidence for a deeply penetrating solar meridional flow consisting of multiple flow cells[J]. The Astrophysical Journal, 2013, 778(2): L38 doi: 10.1088/2041-8205/778/2/L38
    [67]
    ZHAO J W, BOGART R S, KOSOVICHEV A G, et al. Detection of equatorward meridional flow and evidence of double-cell meridional circulation inside the sun[J]. The Astrophysical Journal, 2013, 774(2): L29 doi: 10.1088/2041-8205/774/2/L29
    [68]
    DIKPATI M, GILMAN P A. Simulating and predicting solar cycles using a flux-transport dynamo[J]. The Astrophysical Journal, 2006, 649(1): 498-514 doi: 10.1086/506314
    [69]
    ZHANG Z B, JIANG J. A Babcock-Leighton-type solar dynamo operating in the bulk of the convection zone[J]. The Astrophysical Journal, 2022, 930(1): 30 doi: 10.3847/1538-4357/ac6177
    [70]
    LUO Y K, JIANG J, WANG R H. The Sun's magnetic power spectra over two solar cycles. II. Cycle dependence of active regions, a magnetic network, and their relation[J]. The Astrophysical Journal, 2024, 970(1): 76 doi: 10.3847/1538-4357/ad5677
    [71]
    HOWE R. Solar interior rotation and its variation[J]. Living Reviews in Solar Physics, 2009, 6(1): 1
    [72]
    ZHONG C Y, JIANG J, ZHANG Z B. Discriminating between Babcock–Leighton-type solar dynamo models by torsional oscillations[J]. The Astrophysical Journal, 2024, 969(2): 75 doi: 10.3847/1538-4357/ad4f88
    [73]
    KOSOVICHEV A G, PIPIN V V. Dynamo wave patterns inside of the sun revealed by torsional oscillations[J]. The Astrophysical Journal Letters, 2019, 871(2): L20 doi: 10.3847/2041-8213/aafe82
    [74]
    VORONTSOV S V, CHRISTENSEN-DALSGAARD J, SCHOU J, et al. Helioseismic measurement of solar torsional oscillations[J]. Science, 2002, 296(5565): 101-103 doi: 10.1126/science.1069190
    [75]
    VASIL G M, LECOANET D, AUGUSTSON K, et al. The solar dynamo begins near the surface[J]. Nature, 2024, 629(8013): 769-772 doi: 10.1038/s41586-024-07315-1
    [76]
    PARKER E N. Hydromagnetic dynamo models[J]. Astrophysical Journal, 1955, 122: 293 doi: 10.1086/146087
    [77]
    BABCOCK H W. The topology of the sun's magnetic field and the 22-year cycle[J]. The Astrophysical Journal, 1961, 133: 572 doi: 10.1086/147060
    [78]
    LEIGHTON R B. Transport of magnetic fields on the sun[J]. The Astrophysical Journal, 1964, 140: 1547 doi: 10.1086/148058
    [79]
    LEIGHTON R B. A magneto-kinematic model of the solar cycle[J]. The Astrophysical Journal, 1969, 156: 1 doi: 10.1086/149943
    [80]
    JIANG J, HATHAWAY D H, CAMERON R H, et al. Magnetic flux transport at the solar surface[J]. Space Science Reviews, 2014, 186(1): 491-523
    [81]
    BHOWMIK P, NANDY D. Prediction of the strength and timing of sunspot cycle 25 reveal decadal-scale space environmental conditions[J]. Nature Communications, 2018, 9(1): 5209 doi: 10.1038/s41467-018-07690-0
    [82]
    JIANG J, WANG J X, JIAO Q R, et al. Predictability of the solar cycle over one cycle[J]. The Astrophysical Journal, 2018, 863(2): 159 doi: 10.3847/1538-4357/aad197
    [83]
    NANDY D. Progress in solar cycle predictions: sunspot cycles 24-25 in perspective[J]. Solar Physics, 2001, 296(3): 54
    [84]
    NANDY D, BANERJEE D, BHOWMIK P, et al. Exploring the solar poles: the last great frontier of the sun[J]. Bulletin of the American Astronomical Society, 2023, 55(3): 287
    [85]
    HINDMAN B W, FEATHERSTONE N A, JULIEN K. Morphological classification of the convective regimes in rotating stars[J]. The Astrophysical Journal, 2020, 898(2): 120 doi: 10.3847/1538-4357/ab9ec2
    [86]
    GIZON L, CAMERON R H, BEKKI Y, et al. Solar inertial modes: observations, identification, and diagnostic promise[J]. Astronomy :Times New Roman;">& Astrophysics, 2021, 652: L6
    [87]
    LIANG Z C, GIZON L. Doppler velocity of m = 1 high-latitude inertial mode over the last five sunspot cycles[J]. Astronomy :Times New Roman;">& Astrophysics, 2025, 695: A67
    [88]
    ZHAO J W, NAGASHIMA K, BOGART R S, et al. Systematic center-to-limb variation in measured helioseismic travel times and its effect on inferences of solar interior meridional flows[J]. The Astrophysical Journal, 2012, 749(1): L5 doi: 10.1088/2041-8205/749/1/L5
    [89]
    SEKII T, APPOURCHAUX T, FLECK B, et al. Future mission concepts for helioseismology[J]. Space Science Reviews, 2015, 196(1): 285-302
    [90]
    ROTH M, DOERR H P, HARTLEP T. Verification of the helioseismic Fourier-Legendre analysis for meridional flow measurements[J]. Astronomy :Times New Roman;">& Astrophysics, 2016, 592: A106
    [91]
    YANG D. Ghost images in helioseismic holography? Toy models in a uniform medium[J]. Solar Physics, 2018, 293(2): 17 doi: 10.1007/s11207-018-1246-0
    [92]
    DASI-ESPUIG M, SOLANKI S K, KRIVOVA N A, et al. Sunspot group tilt angles and the strength of the solar cycle[J]. Astronomy :Times New Roman;">& Astrophysics, 2010, 518: A711
    [93]
    JIAO Q R, JIANG J, WANG Z F. Sunspot tilt angles revisited: dependence on the solar cycle strength[J]. Astronomy :Times New Roman;">& Astrophysics, 2021, 653: A27
    [94]
    JIANG J. Nonlinear mechanisms that regulate the solar cycle amplitude[J]. The Astrophysical Journal, 2020, 900(1): 19 doi: 10.3847/1538-4357/abaa4b
    [95]
    CAMERON R H, JIANG J, SCHMITT D, et al. Surface flux transport modeling for solar cycles 15-21: effects of cycle-dependent tilt angles of sunspot groups[J]. The Astrophysical Journal, 2010, 719(1): 264-270 doi: 10.1088/0004-637X/719/1/264
    [96]
    CAMERON R H, SCHMITT D, JIANG J, et al. Surface flux evolution constraints for flux transport dynamos[J]. Astronomy :Times New Roman;">& Astrophysics, 2012, 542: A127
    [97]
    CAMERON R H, DUVALL T L, SCHÜSSLER M, et al. Observing and modeling the poloidal and toroidal fields of the solar dynamo[J]. Astronomy :Times New Roman;">& Astrophysics, 2018, 609: A56
    [98]
    UGARTE-URRA I, WANG Y M. Thin jets underlie the solar wind[J]. Science, 2023, 381(6660): 833-834 doi: 10.1126/science.adj8002
    [99]
    VERSCHAREN D, KLEIN K G, MARUCA B A. The multi-scale nature of the solar wind[J]. Living Reviews in Solar Physics, 2019, 16(1): 5 doi: 10.1007/s41116-019-0021-0
    [100]
    NEUGEBAUER M, SNYDER C W. Solar plasma experiment[J]. Science, 1962, 138(3545): 1095-1097 doi: 10.1126/science.138.3545.1095.b
    [101]
    CRANMER S R. Coronal holes[J]. Living Reviews in Solar Physics, 2009, 6(1): 3
    [102]
    BROOKS D H, UGARTE-URRA I, WARREN H P. Full-Sun observations for identifying the source of the slow solar wind[J]. Nature Communications, 2015, 6(1): 5947 doi: 10.1038/ncomms6947
    [103]
    SAKAO T, KANO R, NARUKAGE N, et al. Continuous plasma outflows from the edge of a solar active region as a possible source of solar wind[J]. Science, 2007, 318(5856): 1585-1588 doi: 10.1126/science.1147292
    [104]
    WANG Y M, SHEELEY JR N R, Nash A G. Latitudinal distribution of solar-wind speed from magnetic observations of the Sun[J]. Nature, 1990, 347(6292): 439-444 doi: 10.1038/347439a0
    [105]
    XIA L D, MARSCH E, CURDT W. On the outflow in an equatorial coronal hole[J]. Astronomy :Times New Roman;">& Astrophysics, 2003, 399(1): L5-L9
    [106]
    POLETTO G. Solar coronal plumes[J]. Living Reviews in Solar Physics, 2015, 12(1): 7 doi: 10.1007/lrsp-2015-7
    [107]
    GABRIEL A H, BELY-DUBAU F, LEMAIRE P. The contribution of polar plumes to the fast solar wind[J]. The Astrophysical Journal, 2003, 589(1): 623-634 doi: 10.1086/374416
    [108]
    WANG Y M, SHEELEY JR N R, WALTERS J H, et al. Origin of streamer material in the outer corona[J]. The Astrophysical Journal, 1998, 498(2): L165-L168 doi: 10.1086/311321
    [109]
    DE PONTIEU B, TITLE A M, LEMEN J R, et al. The interface region imaging spectrograph (IRIS)[J]. Solar Physics, 2014, 289(7): 2733-2779 doi: 10.1007/s11207-014-0485-y
    [110]
    CHITTA L P, HUANG Z, D’AMICIS R, et al. Coronal hole picoflare jets are progenitors of both fast and Alfvénic slow solar wind[J]. Astronomy :Times New Roman;">& Astrophysics, 2025, 694: A71
    [111]
    HE J S, TU C Y, MARSCH E. Modeling of solar wind in the coronal funnel with mass and energy supplied at 5 Mm[J]. Solar Physics, 2008, 250(1): 147-158 doi: 10.1007/s11207-008-9214-8
    [112]
    YANG L P, HE J S, PETER H, et al. Injection of plasma into the nascent solar wind via reconnection driven by supergranular advection[J]. The Astrophysical Journal, 2013, 770(1): 6 doi: 10.1088/0004-637X/770/1/6
    [113]
    BALE S D, DRAKE J F, MCMANUS M D, et al. Interchange reconnection as the source of the fast solar wind within coronal holes[J]. Nature, 2023, 618(7964): 252-256 doi: 10.1038/s41586-023-05955-3
    [114]
    KENNIS S, PERRI B, POEDTS S. Magnetic connectivity from the Sun to the Earth with MHD models: I. Impact of the magnetic modelling on connectivity validation[J]. Astronomy :Times New Roman;">& Astrophysics, 2024, 691: A257
    [115]
    CRANMER S R, GIBSON S E, RILEY P. Origins of the ambient solar wind: implications for space weather[J]. Space Science Reviews, 2017, 212(3): 1345-1384
    [116]
    RICHARDSON I G. Solar wind stream interaction regions throughout the heliosphere[J]. Living Reviews in Solar Physics, 2018, 15(1): 1 doi: 10.1007/s41116-017-0011-z
    [117]
    BURLAGA L F, SZABO A. Fast and slow flows in the solar wind near the ecliptic at 1 AU?[J]. Space Science Reviews, 1999, 87(1): 137-140
    [118]
    LINKER J A, CAPLAN R M, DOWNS C, et al. The open flux problem[J]. The Astrophysical Journal, 2017, 848(1): 70 doi: 10.3847/1538-4357/aa8a70
    [119]
    ZHOU Y F, FENG X S, WU S T, et al. Using a 3-D spherical plasmoid to interpret the Sun-to-Earth propagation of the 4 November 1997 coronal mass ejection event[J]. Journal of Geophysical Research, 2012, 117(A1): A01102
    [120]
    CHEN P F. Coronal mass ejections: models and their observational basis[J]. Living Reviews in Solar Physics, 2011, 8(1): 1-92
    [121]
    KAISER M L, KUCERA T A, DAVILA J M, et al. The STEREO mission: an introduction[J]. Space Science Reviews, 2008, 136(1): 5-16
    [122]
    XIONG M, DAVIES J A, LI B, et al. Prospective out-of-ecliptic white-light imaging of interplanetary corotating interaction regions at solar maximum[J]. The Astrophysical Journal, 2017, 844(1): 76 doi: 10.3847/1538-4357/aa7aaa
    [123]
    WANG Y M, WANG B Y, SHEN C L, et al. Deflected propagation of a coronal mass ejection from the corona to interplanetary space[J]. Journal of Geophysical Research: Space Physics, 2014, 119(7): 5117-5132 doi: 10.1002/2013JA019537
    [124]
    XIONG M, DAVIES J A, HARRISON R A, et al. Prospective out-of-ecliptic white-light imaging of coronal mass ejections traveling through the corona and heliosphere[J]. The Astrophysical Journal, 2018, 852(2): 111 doi: 10.3847/1538-4357/aaa028
    [125]
    VERBEKE C, MAYS M L, KAY C, et al. Quantifying errors in 3D CME parameters derived from synthetic data using white-light reconstruction techniques[J]. Advances in Space Research, 2023, 72(12): 5243-5262 doi: 10.1016/j.asr.2022.08.056
    [126]
    ODSTRČIL D, PIZZO V J. Three-dimensional propagation of coronal mass ejections (CMEs) in a structured solar wind flow: 2. CME launched adjacent to the streamer belt[J]. Journal of Geophysical Research: Space Physics, 1999, 104(A1): 493-503 doi: 10.1029/1998JA900038
    [127]
    SHEN F, FENG X S, WU S T, et al. Three-dimensional MHD simulation of CMEs in three-dimensional background solar wind with the self-consistent structure on the source surface as input: Numerical simulation of the January 1997 Sun-Earth connection event[J]. Journal of Geophysical Research: Space Physics, 2007, 112(A6): A06109
    [128]
    DU C X, AO X Z, LUO B X, et al. Ensemble numerical simulations of realistic SEP events and the inspiration for space weather awareness[J]. Research in Astronomy and Astrophysics, 2022, 22(2): 025003 doi: 10.1088/1674-4527/ac3adb
    [129]
    ALEXANDER D, SANDMAN A, LIEWER P, et al. Solar polar imager: observing solar activity from a new perspective[C]// Proceedings of the Solar Wind 11 / SOHO 16, "Connecting Sun and Heliosphere" Conference. Whistler: ESA, 2005: 663
    [130]
    LIEWER P C, AYON J, ALEXANDER D, et al. Solar polar imager: observing solar activity from a new perspective[M]//ALLEN M S. NASA Space Science Vision Missions: Volume 224, Progress in Astronautics and Aeronautics Series. Reston: American Institute of Aeronautics and Astronautics, 2008
    [131]
    APPOURCHAUX T, LIEWER P, WATT M, et al. POLAR investigation of the Sun—POLARIS[J]. Experimental Astronomy, 2009, 23(3): 1079-1117 doi: 10.1007/s10686-008-9107-8
    [132]
    WU J, SUN W Y, ZHENG J H, et al. Imaging interplanetary CMEs at radio frequency from solar polar orbit[J]. Advances in Space Research, 2011, 48(5): 943-954 doi: 10.1016/j.asr.2011.05.001
    [133]
    XIONG M, LIU Y, LIU H, et al. Overview of the solar polar orbit telescope project for space weather mission[J]. Chinese Journal of Space Science, 2016, 36(3): 245-266 doi: 10.11728/cjss2016.03.245
    [134]
    HASSLER D M, GIBSON S E, NEWMARK J S, et al. Solaris: a focused solar polar discovery-class mission to achieve the highest priority heliophysics science now[J]. Bulletin of the American Astronomical Society, 2023, 55(3): 164
    [135]
    KOBAYASHI K, JOHNSON L, THOMAS H, et al. The high inclination solar mission[C]//AGU Fall Meeting. Washington: American Geophysical Union, 2020.
    [136]
    PESNELL W D, THOMPSON B J, CHAMBERLIN P C. The Solar Dynamics Observatory (SDO)[J]. Solar Physics, 2012, 275(1): 3-15
    [137]
    GAN W Q, ZHU C, DENG Y Y, et al. Advanced space-based solar observatory (ASO-S): an overview[J]. Research in Astronomy and Astrophysics, 2019, 19(11): 156 doi: 10.1088/1674-4527/19/11/156
    [138]
    SEETHA S, MEGALA S. Aditya-L1 mission[J]. Current Science, 2017, 113(4): 610 doi: 10.18520/cs/v113/i04/610-612
    [139]
    DEFOREST C, KILLOUGH R, GIBSON S, et al. Polarimeter to UNify the corona and heliosphere (PUNCH): science, status, and path to flight[C]//2022 IEEE Aerospace Conference (AERO). Big Sky: IEEE, 2022: 1-11
    [140]
    PALOMBA M, LUNTAMA J P. Vigil: ESA Space Weather Mission in L5[C]//44th COSPAR Scientific Assembly. Athens Greece: COSPAR, 2022
    [141]
    LÖPTIEN B, BIRCH A C, GIZON L, et al. Helioseismology with Solar Orbiter[J]. Space Science Reviews, 2015, 196(1): 251-283
    [142]
    HOU C P, HE J S, DUAN D, et al. The origin of interplanetary switchbacks in reconnection at chromospheric network boundaries[J]. Nature Astronomy, 2024, 8(10): 1246-1256 doi: 10.1038/s41550-024-02321-9
    [143]
    XU Y, TIAN H, HOU Z Y, et al. Sun-as-a-star spectroscopic observations of the line-of-sight velocity of a solar eruption on 2021 October 28[J]. The Astrophysical Journal, 2022, 931(2): 76 doi: 10.3847/1538-4357/ac69d5
    [144]
    YANG Z H, TIAN H, BAI X Y, et al. Can we detect coronal mass ejections through asymmetries of sun-as-a-star extreme-ultraviolet spectral line profiles?[J]. The Astrophysical Journal Supplement Series, 2022, 260(2): 36 doi: 10.3847/1538-4365/ac6607
    [145]
    LU H P, TIAN H, CHEN H C, et al. Full velocities and propagation directions of coronal mass ejections inferred from simultaneous full-disk imaging and sun-as-a-star spectroscopic observations[J]. The Astrophysical Journal, 2023, 953(1): 68 doi: 10.3847/1538-4357/acd6a1
    [146]
    FENG L, INHESTER B, SOLANKI S K, et al. Stereoscopic polar plume reconstructions from STEREO/SECCHI images[J]. The Astrophysical Journal, 2009, 700(1): 292-301 doi: 10.1088/0004-637X/700/1/292
    [147]
    WILHELM K, ABBO L, AUCHÈRE F, et al. Morphology, dynamics and plasma parameters of plumes and inter-plume regions in solar coronal holes[J]. The Astronomy and Astrophysics Review, 2011, 19(1): 35 doi: 10.1007/s00159-011-0035-7
    [148]
    TELLONI D, ZANK G P, STANGALINI M, et al. Observation of a magnetic switchback in the solar corona[J]. The Astrophysical Journal Letters, 2022, 936(2): L25 doi: 10.3847/2041-8213/ac8104
    [149]
    FENG L, WIEGELMANN T, SU Y, et al. Magnetic energy partition between the coronal mass ejection and flare from AR 11283[J]. The Astrophysical Journal, 2013, 765(1): 37 doi: 10.1088/0004-637X/765/1/37
    [150]
    BRUECKNER G E, HOWARD R A, KOOMEN M J, et al. The large angle spectroscopic coronagraph (LASCO)[J]. Solar Physics, 1995, 162(1): 357-402
    [151]
    HALEKAS J S, BALE S D, BERTHOMIER M, et al. Quantifying the energy budget in the solar wind from 13.3 to 100 solar radii[J]. The Astrophysical Journal, 2023, 952(1): 26 doi: 10.3847/1538-4357/acd769
    [152]
    HOLMAN G D, SUI L, SCHWARTZ R A, et al. Electron bremsstrahlung hard X-Ray spectra, electron distributions, and energetics in the 2002 July 23 solar flare[J]. The Astrophysical Journal, 2003, 595(2): L97-L101 doi: 10.1086/378488
    [153]
    HOLMAN G D, ASCHWANDEN M J, AURASS H, et al. Implications of X-ray observations for electron acceleration and propagation in solar flares[J]. Space Science Reviews, 2011, 159(1): 107-166
    [154]
    KRUCKER S, BATTAGLIA M, CARGILL P J, et al. Hard X-ray emission from the solar corona[J]. The Astronomy and Astrophysics Review, 2008, 16(3): 155-208
    [155]
    SU Y, VERONIG A M, HOLMAN G D, et al. Imaging coronal magnetic-field reconnection in a solar flare[J]. Nature Physics, 2013, 9(8): 489-493 doi: 10.1038/nphys2675
    [156]
    KANE S R, HURLEY K, MCTIERNAN J M, et al. Stereoscopic observations of solar hard X-ray flares made by Ulysses and Yohkoh[J]. The Astrophysical Journal, 1998, 500(2): 1003-1008 doi: 10.1086/305738
    [157]
    PATERSON S, HANNAH I G, GREFENSTETTE B W, et al. The first survey of quiet sun features observed in hard X-Rays with NuSTAR[J]. Solar Physics, 2023, 298(3): 47 doi: 10.1007/s11207-023-02135-4
    [158]
    PATERSON S, HANNAH I G, GREFENSTETTE B W, et al. Time evolution of X-ray bright points observed with NuSTAR[J]. Monthly Notices of the Royal Astronomical Society, 2024, 528(4): 6398-6410 doi: 10.1093/mnras/stae417
    [159]
    GOLUB L, KRIEGER A S, SILK J K, et al. Solar X-Ray bright points[J]. The Astrophysical Journal, 1974, 189: L93 doi: 10.1086/181472
    [160]
    HARVEY K L, STRONG K T, NITTA N, et al. Lifetimes and distribution of coronal bright points observed with Yohkoh[J]. Advances in Space Research, 1993, 13(9): 27-30 doi: 10.1016/0273-1177(93)90453-I
    [161]
    ALIPOUR N, SAFARI H. Statistical properties of solar coronal bright points[J]. The Astrophysical Journal, 2015, 807(2): 175 doi: 10.1088/0004-637X/807/2/175
    [162]
    ZHANG J, KUNDU M R, WHITE S M. Spatial distribution and temporal evolution of coronal bright points[J]. Solar Physics, 2001, 198(2): 347-365 doi: 10.1023/A:1005222616375
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(7)

    Article Metrics

    Article Views(76) PDF Downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return