Citation: | SHENG Zheng, GUO Sheng, LENG Hongze, WANG Sicheng, SONG Junqiang. Major Advances in Aerospace Transition Zone Atmospheric Dynamics Research (in Chinese). Chinese Journal of Space Science, 2025, 45(4): 1-14 doi: 10.11728/cjss2025.04.2025-yg01 |
[1] |
刘有建, 李建成, 徐新禹等. 超低轨卫星星座恢复短周期时变重力场的模拟分析[J/OL]. 武汉大学学报(信息科学版), (2024-05-15). https://doi.org/10.13203/j.whugis20240047
LIU Youjian, LI Jiancheng, XU Xinyu, et al. Simulation analysis of short-period time-varying gravity field in recovery of very-low orbit satellite constellation[J/OL]. Geomatics and Information Science of Wuhan University, (2024-05-15). https://doi.org/10.13203/j.whugis20240047
|
[2] |
靳旭红, 黄飞, 张俊, 等. 上层大气层飞行器研究进展及气动技术挑战[J]. 航空学报, 2024, 45(22): 030254
JIN Xuhong, HUANG Fei, ZHANG Jun, et al. Spacecraft in upper atmosphere: Research development and aerodynamic challenges[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(22): 030254
|
[3] |
任德馨. 热层大气对太阳辐射变化的响应机制及预报研究[D]. 合肥: 中国科学技术大学, 2021
REN Dexin. An Investigation on Thermospheric Response to Solar Flux Changes and Data Assimilation-Based Thermospheric Prediction[D]. Hefei: University of Science and Technology of China, 2021
|
[4] |
BORTHAKUR M, SiNNHUBER M, LAENG A, et al. Impact of chlorine ion chemistry on ozone loss in the middle atmosphere during very large solar proton events[J]. Atmospheric Chemistry and Physics, 2023, 23(20): 12985-13013 doi: 10.5194/acp-23-12985-2023
|
[5] |
SCHMIDT C, KÜCHELBACHER L, WÜST S, et al. OH airglow observations with two identical spectrometers: benefits of increased data homogeneity in the identification of variations induced by the 11-year solar cycle, the QBO, and other factors[J]. Atmospheric Measurement Techniques, 2023, 16(19): 4331-4356 doi: 10.5194/amt-16-4331-2023
|
[6] |
KALICINSKY C, KNIELING P, KOPPMANN R, et al. Long-term dynamics of OH * temperatures over central Europe: trends and solar correlations[J]. Atmospheric Chemistry and Physics, 2016, 16(23): 15033-15047 doi: 10.5194/acp-16-15033-2016
|
[7] |
FYTTERER T, SANTEE M L, SINNHUBER M, et al. The 27-day solar rotational effect on mesospheric nighttime OH and O3 observations induced by geomagnetic activity[J]. Journal of Geophysical Research: Space Physics, 2015, 120(9): 7926-7936 doi: 10.1002/2015JA021183
|
[8] |
LEDNYTS'KYY O, VON SAVIGNY C, WEBER M. Sensitivity of equatorial atomic oxygen in the MLT region to the 11-year and 27-day solar cycles[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2017, 162: 136-150 doi: 10.1016/j.jastp.2016.11.003
|
[9] |
THOMAS G E, THURAIRAJAH B, HERVIG M E, et al. Solar-induced 27-day variations of mesospheric temperature and water vapor from the AIM SOFIE experiment: drivers of polar mesospheric cloud variability[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2015, 134: 56-68 doi: 10.1016/j.jastp.2015.09.015
|
[10] |
NEWNHAM D A, RODGER C J, MARSH D R, et al. Spatial distributions of nitric oxide in the Antarctic wintertime middle atmosphere during geomagnetic storms[J]. Journal of Geophysical Research: Space Physics, 2020, 125(7): e2020JA027846 doi: 10.1029/2020JA027846
|
[11] |
HENDRICKX K, MEGNER L, GUMBEL J, et al. Observation of 27-day solar cycles in the production and mesospheric descent of EPP-produced NO[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(10): 8978-8988
|
[12] |
HOOD L. Lagged response of tropical tropospheric temperature to solar ultraviolet variations on intraseasonal time scales[J]. Geophysical Research Letters, 2016, 43(8): 4066-4075 doi: 10.1002/2016GL068855
|
[13] |
RONG P, VON SAVIGNY C, ZHANG C M, et al. Response of middle atmospheric temperature to the 27 d solar cycle: an analysis of 13 years of microwave limb sounder data[J]. Atmospheric Chemistry and Physics, 2020, 20(3): 1737-1755 doi: 10.5194/acp-20-1737-2020
|
[14] |
SHINDELL D T, FALUVEGI G, SCHMIDT G A. Influences of solar forcing at ultraviolet and longer wavelengths on climate[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(7): e2019JD031640 doi: 10.1029/2019JD031640
|
[15] |
ROBERT C E, VON SAVIGNY C, RAHPOE N, et al. First evidence of a 27-day solar signature in noctilucent cloud occurrence frequency[J]. Journal of Geophysical Research: Atmospheres, 2010, 115(D1): D00I12
|
[16] |
THURAIRAJAH B, THOMAS G E, VON SAVIGNY C, et al. Solar-induced 27-day variations of polar mesospheric clouds from the AIM SOFIE and CIPS experiments[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2017, 162: 122-135 doi: 10.1016/j.jastp.2016.09.008
|
[17] |
HERVIG M E, SISKIND D E, BAILEY S M, et al. The missing solar cycle response of the polar summer mesosphere[J]. Geophysical Research Letters, 2019, 46(16): 10132-10139 doi: 10.1029/2019GL083485
|
[18] |
THIÉBLEMONT R, MATTHES K, OMRANI N E, et al. Solar forcing synchronizes decadal North Atlantic climate variability[J]. Nature Communications, 2015, 6(1): 8268 doi: 10.1038/ncomms9268
|
[19] |
DREWS A, HUO W J, MATTES K, et al. The Sun's role in decadal climate predictability in the North Atlantic[J]. Atmospheric Chemistry and Physics, 2022, 22(12): 7893-7904 doi: 10.5194/acp-22-7893-2022
|
[20] |
CHIODO G, OEHRLEIN J, POLVANI L M, et al. Insignificant influence of the 11-year solar cycle on the North Atlantic Oscillation[J]. Nature Geoscience, 2019, 12(2): 94-99 doi: 10.1038/s41561-018-0293-3
|
[21] |
刘立波, 陈一定, 张瑞龙, 等. 电离层日变化特性研究简述[J]. 地球与行星物理论评, 2021, 52(6): 647-661
LIU Libo, CHEN Yiding, ZHANG Ruilong, et al. Some investigations of ionospheric diurnal variation[J]. Reviews of Geophysics and Planetary Physics, 2021, 52(6): 647-661
|
[22] |
MAKSYUTIN S V, SHERSTYUKOV O N. Dependence of E-sporadic layer response on solar and geomagnetic activity variations from its ion composition[J]. Advances in Space Research, 2005, 35(8): 1496-1499 doi: 10.1016/j.asr.2005.05.062
|
[23] |
ZHANG Y B, WU J, GUO L X, et al. Influence of solar and geomagnetic activity on sporadic-E layer over low, mid and high latitude stations[J]. Advances in Space Research, 2015, 55(5): 1366-1371 doi: 10.1016/j.asr.2014.12.010
|
[24] |
WU D L. Ionospheric S4 scintillations from GNSS radio occultation (RO) at slant path[J]. Remote Sensing, 2020, 12(15): 2373 doi: 10.3390/rs12152373
|
[25] |
NIU J, WENG L B, MENG X, et al. Morphology of ionospheric Sporadic E layer intensity based on COSMIC occultation data in the midlatitude and low-latitude regions[J]. Journal of Geophysical Research: Space Physics, 2019, 124(6): 4796-4808 doi: 10.1029/2019JA026828
|
[26] |
BERGSSON B, SYNDERGAARD S. Global temporal and spatial variations of ionospheric sporadic-E derived from radio occultation measurements[J]. Journal of Geophysical Research: Space Physics, 2022, 127(4): e2022JA030296 doi: 10.1029/2022JA030296
|
[27] |
ANDRIOLI V F, XU J, BATISTA P P, et al. New findings relating tidal variability and solar activity in the low latitude MLT region[J]. Journal of Geophysical Research: Space Physics, 2022, 127(3): e2021JA030239 doi: 10.1029/2021JA030239
|
[28] |
ZHANG Y B, PENG H Y, JIN R M, et al. The characteristics and simulation of sporadic E layers in ascending and descending phases of the solar cycle at mid-latitude stations[J]. Journal of Geophysical Research: Space Physics, 2025, 130(1): e2024JA033356 doi: 10.1029/2024JA033356
|
[29] |
YAO Y B, ZHAI C Z, KONG J, et al. Contribution of solar radiation and geomagnetic activity to global structure of 27-day variation of ionosphere[J]. Journal of Geodesy, 2017, 91(11): 1299-1311 doi: 10.1007/s00190-017-1026-x
|
[30] |
CHAKRABORTY S, PALIT S, DEB S, et al. Modeling of the variability of D-region ionospheric electron density during solar cycle-24[J]. Journal of Geophysical Research: Space Physics, 2024, 129(10): e2024JA032700 doi: 10.1029/2024JA032700
|
[31] |
EMMERT J T, MANNUCCI A J, MCDONALD S E, et al. Attribution of interminimum changes in global and hemispheric total electron content[J]. Journal of Geophysical Research: Space Physics, 2017, 122(2): 2424-2439 doi: 10.1002/2016JA023680
|
[32] |
GEOFFREY A, EMIRANT B, EDWARD J, et al. Modeling of GPS total electron content over the African low-latitude region using empirical orthogonal functions[J]. Annales Geophysicae, 2019, 37(1): 65-76 doi: 10.5194/angeo-37-65-2019
|
[33] |
HE Z H, XU J Y, DAI L, et al. Solar activity effects on the near‐Earth space regions during the descending phase of solar cycle 24[J]. Journal of Geophysical Research: Space Physics, 2024, 129(11): e2024JA032860 doi: 10.1029/2024JA032860
|
[34] |
HOUSEHOLDER I M, DUDERSTADT K A, PETTIT J M, et al. Comparisons of energetic electron observations between FIREBIRD-II CubeSats and POES/MetOp satellites from 2018 to 2020[J]. Space Weather, 2024, 22(12): e2024SW004056 doi: 10.1029/2024SW004056
|
[35] |
XUE D B, WU L X, XU T H, et al. Space weather effects on transportation systems: a review of current understanding and future outlook[J]. Space Weather, 2024, 22(12): e2024SW004055 doi: 10.1029/2024SW004055
|
[36] |
TINSLEY B A. Solar activity, weather, and Climate: the elusive connection[J]. Bulletin of the American Meteorological Society, 2023, 104(12): E2171-E2191 doi: 10.1175/BAMS-D-23-0065.1
|
[37] |
JIA J, MURBERG L E, LØVSET T, et al. Energetic particle precipitation influences global secondary ozone distribution[J]. Communications Earth :Times New Roman;">& Environment, 2024, 5(1): 270
|
[38] |
SZELA̧G M E, MARSH D R, VERRONEN P T, et al. Ozone impact from solar energetic particles cools the polar stratosphere[J]. Nature Communications, 2022, 13(1): 6883 doi: 10.1038/s41467-022-34666-y
|
[39] |
雷久侯, 李若曦, 任德馨, 等. 热层大气密度反演与建模研究进展[J]. 地球与行星物理论评(中英文), 2023, 54(4): 434-454
LEI Jiuhou, LI Ruoxi, REN Dexin, et al. Recent progress on the retrieval and modeling of thermosphere mass density[J]. Reviews of Geophysics and Planetary Physics, 2023, 54(4): 434-454
|
[40] |
HE Y, ZHU X, SHENG Z, et al. Statistical Characteristics of Inertial Gravity Waves Over a Tropical Station in the Western Pacific Based on High-Resolution GPS Radiosonde Soundings [J]. Journal of Geophysical Research: Atmosphere. 126(11): e2021JD034719
|
[41] |
ZHANG S P, SALAH J E, MITCHELL N, et al. Responses of the mesospheric wind at high latitudes to the April 2002 space storm[J]. Geophysical Research Letters, 2003, 30(23): 2225
|
[42] |
QIAN L Y, SOLOMON S C, MLYNCZAK M G. Model simulation of thermospheric response to recurrent geomagnetic forcing[J]. Journal of Geophysical Research: Space Physics, 2010, 115(A10): A10301
|
[43] |
宋茜, 丁锋, 万卫星, 等. 2011年5月28日磁暴期间中国地区大尺度电离层行进式扰动的GPS台网监测[J]. 中国科学: 地球科学, 2013, 43(4): 513-522
Song Q, Ding F, Wan W X, et al. Monitoring traveling ionospheric disturbances using the GPS network around China during the geomagnetic storm on 28 May 2011. Science China: Earth Sciences, 2013, 56: 718–726
|
[44] |
JIANG G Y, WANG W B, XU J Y, et al. Responses of the lower thermospheric temperature to the 9-day and 13.5-day oscillations of recurrent geomagnetic activity[J]. Journal of Geophysical Research: Space Physics, 2014, 119(6): 4841-4859 doi: 10.1002/2013JA019406
|
[45] |
YI W, REID I M, XUE X H, et al. First observations of Antarctic mesospheric tidal wind responses to recurrent geomagnetic activity[J]. Geophysical Research Letters, 2021, 48(4): e2020GL089957 doi: 10.1029/2020GL089957
|
[46] |
LI Y X, CHEN G, ZHANG S D, et al. Observational evidence for the neutral wind responses in the mid-latitude lower thermosphere to the strong geomagnetic activity[J]. Space Weather, 2024, 22(9): e2023SW003830 doi: 10.1029/2023SW003830
|
[47] |
KAM H, KWAK Y S, LEE C, et al. Response of meteor plasma trails observed by meteor radar to geomagnetic activity[J]. Geophysical Research Letters, 2023, 50(6): e2022GL102636 doi: 10.1029/2022GL102636
|
[48] |
MARTINEZ B C, LU X. Quantifying day-to-day variability of O/N2 and its correlation with geomagnetic activity using GOLD[J]. Frontiers in Astronomy and Space Sciences, 2023, 10: 1129279 doi: 10.3389/fspas.2023.1129279
|
[49] |
GU S Y, QI J H, ZHOU C, et al. Tidal variations in the ionosphere and mesosphere over eastern China during 2014[J]. Journal of Geophysical Research: Space Physics, 2020, 125(2): e2019JA027526 doi: 10.1029/2019JA027526
|
[50] |
FULLER-ROWELL T J, MILLWARD G H, RICHMOND A D, et al. Storm-time changes in the upper atmosphere at low latitudes[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2002, 64(12/14): 1383-1391
|
[51] |
GARDNER L C, SCHUNK R W. Generation of traveling atmospheric disturbances during pulsating geomagnetic storms[J]. Journal of Geophysical Research: Space Physics, 2010, 115(A8): A08314
|
[52] |
GAN Q, EASTES R W, WU Y J, et al. Thermospheric responses to the 3 and 4 November 2021 geomagnetic storm during the main and recovery phases as observed by NASA’s GOLD and ICON missions[J]. Geophysical Research Letters, 2024, 51(1): e2023GL106529 doi: 10.1029/2023GL106529
|
[53] |
MERIWETHER J W. Thermospheric dynamics at low and mid-latitudes during magnetic storm activity[M]//KINTNER JR P M, COSTER A J, FULLER-ROWELL T, et al. Midlatitude Ionospheric Dynamics and Disturbances. Washington: AGU, 2008, 181: 201-219
|
[54] |
LI J Y, WANG W B, LU J Y, et al. On the responses of mesosphere and lower thermosphere temperatures to geomagnetic storms at low and middle latitudes[J]. Geophysical Research Letters, 2018, 45(19): 10128-10137
|
[55] |
LI J Y, WANG W B, LU J Y, et al. A modeling study of the responses of mesosphere and lower thermosphere winds to geomagnetic storms at middle latitudes[J]. Journal of Geophysical Research: Space Physics, 2019, 124(5): 3666-3680 doi: 10.1029/2019JA026533
|
[56] |
ZHANG X F, LIU L B, LIU S T. Dependence of thermospheric zonal winds on solar flux, geomagnetic activity, and hemisphere as measured by CHAMP[J]. Journal of Geophysical Research: Space Physics, 2017, 122(8): 8893-8914 doi: 10.1002/2016JA023715
|
[57] |
EVANS J S, CORREIRA J, LUMPE J D, et al. GOLD observations of the thermospheric response to the 10-12 May 2024 Gannon superstorm[J]. Geophysical Research Letters, 2024, 51(16): e2024GL110506 doi: 10.1029/2024GL110506
|
[58] |
DÍAZ J. Monitoring May 2024 solar and geomagnetic storm using broadband seismometers[J]. Scientific Reports, 2024, 14(1): 30066 doi: 10.1038/s41598-024-81079-6
|
[59] |
SERGEEV V A, STEPANOV N A, OGAWA Y, et al. Local time distribution and activity dependence of extreme electron densities in the auroral D-region as an image of energy-dependent energetic electron precipitation[J]. Journal of Geophysical Research: Space Physics, 2024, 129(10): e2024JA032913 doi: 10.1029/2024JA032913
|
[60] |
FRITTS D C, LAUGHMAN B, WANG L, et al. Gravity wave dynamics in a mesospheric inversion layer: 1. reflection, trapping, and instability dynamics[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(2): 626-648 doi: 10.1002/2017JD027440
|
[61] |
LAY E H, SHAO X M, KENDRICK A K, et al. Ionospheric acoustic and gravity waves associated with midlatitude thunderstorms[J]. Journal of Geophysical Research: Space Physics, 2015, 120(7): 6010-6020 doi: 10.1002/2015JA021334
|
[62] |
DU Y, ZHANG F Q. Banded convective activity associated with mesoscale gravity waves over southern China[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(4): 1912-1930 doi: 10.1029/2018JD029523
|
[63] |
WANG L, BURGMANN R. Statistical significance of precursory gravity changes before the 2011 Mw 9.0 Tohoku-Oki earthquake[J]. Geophysical Research Letters, 2019, 46(13): 7323-7332 doi: 10.1029/2019GL082682
|
[64] |
ALEXANDER M J. Global and seasonal variations in three-dimensional gravity wave momentum flux from satellite limb-sounding temperatures[J]. Geophysical Research Letters, 2015, 42(16): 6860-6867 doi: 10.1002/2015GL065234
|
[65] |
FIGUEIREDO C A O B, VADAS S L, BECKER E, et al. Secondary gravity waves from the Tonga volcano eruption: observation and modeling over New Zealand and Australia[J]. Journal of Geophysical Research: Space Physics, 2023, 128(10): e2023JA031476 doi: 10.1029/2023JA031476
|
[66] |
VADAS S L, NICOLLS M J. The phases and amplitudes of gravity waves propagating and dissipating in the thermosphere: Theory[J]. Journal of Geophysical Research: Space Physics, 2012, 117(A5): A05322
|
[67] |
VADAS S L, FRITTS D C. Influence of solar variability on gravity wave structure and dissipation in the thermosphere from tropospheric convection[J]. Journal of Geophysical Research: Space Physics, 2006, 111(A10): A10S12
|
[68] |
BAUMGARTEN K, GERDING M, BAUMGARTEN G, et al. Temporal variability of tidal and gravity waves during a record long 10-day continuous lidar sounding[J]. Atmospheric Chemistry and Physics, 2018, 18(1): 371-384 doi: 10.5194/acp-18-371-2018
|
[69] |
SONG Y, HE Y, SHENG Z, et al. Annual/Quasi-Biennial Variability of Inertial Gravity Waves in the Tropical Western Pacific. Journal of Geophysical Research: Atmosphere. 2024, 130(6): e2024JD042094
|
[70] |
MINAMIHARA Y, SATO K, TSUTSUMI M. Intermittency of gravity waves in the Antarctic troposphere and lower stratosphere revealed by the PANSY radar observation[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(15): e2020JD032543 doi: 10.1029/2020JD032543
|
[71] |
NING W H, HUANG K M, ZHANG S D, et al. A statistical investigation of inertia gravity wave activity based on MST radar observations at Xianghe (116.9°E, 39.8°N), China[J]. Journal of Geophysical Research: Atmospheres, 2022, 127(1): e2021JD035315 doi: 10.1029/2021JD035315
|
[72] |
CHEN Q Y, WU H K, LONG H C, et al. Comparative analysis of gravity wave characteristics in China and the United States using high vertical resolution radiosonde observations[J]. Journal of Geophysical Research: Atmospheres, 2024, 129(14): e2023JD040492 doi: 10.1029/2023JD040492
|
[73] |
WANG X, WANG Y, ZHANG L F, et al. A climatology of stratospheric gravity waves induced by tropical cyclones on the northwest Pacific Ocean[J]. npj Climate and Atmospheric Science, 2024, 7(1): 155 doi: 10.1038/s41612-024-00705-2
|
[74] |
WANG X, ZHANG L F, WANG Y, et al. Influences of the mid-latitude westerly trough on stratospheric gravity waves generated by typhoon Lekima (2019)[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(23): e2021JD035399 doi: 10.1029/2021JD035399
|
[75] |
WANG X, ZHANG L F, WANG Y, et al. The influencing mechanism of a mid-latitude westerly trough on stratospheric gravity waves generated by Typhoon Lekima (2019)[J]. Geophysical Research Letters, 2022, 49(7): e2021GL097544 doi: 10.1029/2021GL097544
|
[76] |
LIU H L. Quantifying gravity wave forcing using scale invariance[J]. Nature Communications, 2019, 10(1): 2605 doi: 10.1038/s41467-019-10527-z
|
[77] |
LIU H L, LAURITZEN P H, VITT F, et al. Assessment of gravity waves from tropopause to thermosphere and ionosphere in high‐resolution WACCM‐X simulations[J]. Journal of Advances in Modeling Earth Systems, 2024, 16(6): e2023MS004024 doi: 10.1029/2023MS004024
|
[78] |
MALHOTRA G, FULLER-ROWELL T, FANG T W, et al. Medium-scale thermospheric gravity waves in the high-resolution Whole Atmosphere Model: seasonal, local time, and longitudinal variations[J]. Journal of Geophysical Research: Atmospheres, 2025, 130(1): e2024JD041810 doi: 10.1029/2024JD041810
|
[79] |
FRITTS D C, LUND A C, LUND T S, et al. Impacts of limited model resolution on the representation of mountain wave and secondary gravity wave dynamics in local and global models. 1: mountain waves in the stratosphere and mesosphere[J]. Journal of Geophysical Research: Atmospheres, 2022, 127(9): e2021JD035990 doi: 10.1029/2021JD035990
|
[80] |
FRITTS D C, LUND A C, LUND T S, et al. Impacts of limited model resolution on the representation of mountain wave and secondary wave dynamics in local and global models: 2. mountain wave and secondary wave evolutions in the thermosphere[J]. Journal of Geophysical Research: Atmospheres, 2022, 127(9): e2021JD036035 doi: 10.1029/2021JD036035
|
[81] |
CRIDDLE N R, PAUTET P D, YUAN T, et al. Evidence for Horizontal blocking and reflection of a small‐scale gravity wave in the mesosphere[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(10): e2019JD031828 doi: 10.1029/2019JD031828
|
[82] |
BECKER E, VADAS S L. Explicit global simulation of gravity waves in the thermosphere[J]. Journal of Geophysical Research: Space Physics, 2020, 125(10): e2020JA028034 doi: 10.1029/2020JA028034
|
[83] |
VADAS S L, BECKER E. Numerical modeling of the generation of tertiary gravity waves in the mesosphere and thermosphere during strong mountain wave events over the Southern Andes[J]. Journal of Geophysical Research: Space Physics, 2019, 124(9): 7687-7718 doi: 10.1029/2019JA026694
|
[84] |
LIU H L, VADAS S L. Large-scale ionospheric disturbances due to the dissipation of convectively-generated gravity waves over Brazil[J]. Journal of Geophysical Research: Space Physics, 2013, 118(5): 2419-2427 doi: 10.1002/jgra.50244
|
[85] |
VADAS S L, LIU H L. Generation of large-scale gravity waves and neutral winds in the thermosphere from the dissipation of convectively generated gravity waves[J]. Journal of Geophysical Research: Space Physics, 2009, 114(A10): A10310
|
[86] |
LIU H L, LAURITZEN P H, VITT F. Impacts of gravity waves on the thermospheric circulation and composition[J]. Geophysical Research Letters, 2024, 51(3): e2023GL107453 doi: 10.1029/2023GL107453
|
[87] |
PARK R S, MASTROLEMOS N, JACOBSON R A, et al. The global shape, gravity field, and libration of enceladus[J]. Journal of Geophysical Research: Planets, 2024, 129(1): e2023JE008054 doi: 10.1029/2023JE008054
|
[88] |
LIU H L, WANG W, HUBA J D, et al. Atmospheric and ionospheric responses to Hunga-Tonga volcano eruption simulated by WACCM-X. Geophysical Research Letters, 2023, 50(10): e2023GL103682
|
[89] |
LEE W, SONG I S, SHIM J S, et al. The impact of lower atmosphere forecast uncertainties on WACCM-X prediction of ionosphere-thermosphere system during geomagnetic storms[J]. Space Weather, 2024, 22(12): e2024SW004137 doi: 10.1029/2024SW004137
|
[90] |
HE Y, ZHU X Q, SHENG Z, et al. Observations of inertia gravity waves in the western Pacific and their characteristic in the 2015/2016 quasi-biennial oscillation disruption[J]. Journal of Geophysical Research: Atmospheres, 2022, 127(22): e2022JD037208 doi: 10.1029/2022JD037208
|
[91] |
ZHANG S D, YI F. A numerical study of propagation characteristics of gravity wave packets propagating in a dissipative atmosphere[J]. Journal of Geophysical Research: Atmospheres, 2002, 107(D14): 4222
|
[92] |
VADAS S L, FRITTS D C. Thermospheric responses to gravity waves: influences of increasing viscosity and thermal diffusivity[J]. Journal of Geophysical Research: Space Physics, 2005, 110(D15): D15103
|
[93] |
DATTA S, DAS S, SUNDA S. Secondary gravity wave propagation in tropical thermospheric region: role of varying kinematic viscosity[J]. Journal of Geophysical Research: Space Physics, 2024, 129(10): e2023JA032364 doi: 10.1029/2023JA032364
|
[94] |
谷升阳. 行星尺度波动及其在大气层耦合中的作用[D]. 合肥: 中国科学技术大学, 2015
GU S Y. Planetary Waves and Their Roles in Atmospheric Coupling[D]. Hefei: University of Science and Technology of China, 2015
|
[95] |
PANCHEVA D, MUKHTAROV P, MITCHELL N J, et al. Planetary waves in coupling the stratosphere and mesosphere during the major stratospheric warming in 2003/2004[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D12): D12105
|
[96] |
HE M S, FORBES J M, STOBER G, et al. Nonlinear interactions of planetary‐scale waves in mesospheric winds observed at 52°N latitude and two longitudes[J]. Geophysical Research Letters, 2024, 51(24): e2024GL110629 doi: 10.1029/2024GL110629
|
[97] |
HE M S, FORBES J M. Rossby wave second harmonic generation observed in the middle atmosphere[J]. Nature Communications, 2022, 13(1): 7544 doi: 10.1038/s41467-022-35142-3
|
[98] |
QIN Y S, GU S Y, DOU X K, et al. Secondary 12-day planetary wave in the mesospheric water vapor during the 2016/2017 unusual Canadian stratospheric warming[J]. Geophysical Research Letters, 2022, 49(4): e2021GL097024 doi: 10.1029/2021GL097024
|
[99] |
YAMAZAKI Y, MATTHIAS V, MIYOSHI Y. Quasi-4-day wave: atmospheric manifestation of the first symmetric Rossby normal mode of zonal wavenumber 2[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(13): e2021JD034855 doi: 10.1029/2021JD034855
|
[100] |
YU F R, HUANG K M, ZHANG S D, et al. Observations of eastward propagating quasi 6-day waves from the troposphere to the lower thermosphere during SSWs in early 2016[J]. Journal of Geophysical Research: Atmospheres, 2022, 127(9): e2021JD036017 doi: 10.1029/2021JD036017
|
[101] |
GU S Y, LI T, DOU X K, et al. Observations of quasi-two-day wave by TIMED/SABER and TIMED/TIDI[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(4): 1624-1639 doi: 10.1002/jgrd.50191
|
[102] |
WANG J C, PALO S E, FORBES J M, et al. Unusual quasi-10-day planetary wave activity and the ionospheric response during the 2019 southern hemisphere sudden stratospheric warming[J]. Journal of Geophysical Research: Space Physics, 2021, 126(6): e2021JA029286 doi: 10.1029/2021JA029286
|
[103] |
FORBES J M, BRUINSMA S L, DOORNBOS E, et al. Gravity wave-induced variability of the middle thermosphere[J]. Journal of Geophysical Research: Space Physics, 2016, 121(7): 6914-6923 doi: 10.1002/2016JA022923
|
[104] |
YAMAZAKI Y, MATTHIAS V, MIYOSHI Y, et al. September 2019 Antarctic sudden stratospheric warming: quasi-6-day wave burst and ionospheric effects[J]. Geophysical Research Letters, 2020, 47(1): e2019GL086577 doi: 10.1029/2019GL086577
|
[105] |
HE M S. Planetary-scale MLT waves diagnosed through multi-station methods: a review[J]. Earth Planets Space, 2023, 75(1): 63 doi: 10.1186/s40623-023-01808-5
|
[106] |
SIDDIQUI T A, CHAU J L, STOLLE C, et al. Migrating solar diurnal tidal variability during northern and southern hemisphere sudden stratospheric warmings[J]. Earth Planets Space, 2022, 74(1): 101 doi: 10.1186/s40623-022-01661-y
|
[107] |
LIU G P, LIEBERMAN R S, HARVEY V L, et al. Tidal variations in the mesosphere and lower thermosphere before, during, and after the 2009 sudden stratospheric warming[J]. Journal of Geophysical Research: Space Physics, 2021, 126(3): e2020JA028827 doi: 10.1029/2020JA028827
|
[108] |
GASPERINI F, JONES JR M, HARDING B J, et al. Direct observational evidence of altered mesosphere lower thermosphere mean circulation from a major sudden stratospheric warming[J]. Geophysical Research Letters, 2023, 50(7): e2022GL102579 doi: 10.1029/2022GL102579
|
[109] |
FULLER ROWELL T J, AKMAEV R A, WU F, et al. Impact of terrestrial weather on the upper atmosphere[J]. Geophysical Research Letters, 2008, 35(9): L09808
|
[110] |
WANG H, AKMAEV R A, FANG T W, et al. First forecast of a sudden stratospheric warming with a coupled whole-atmosphere/ionosphere model IDEA[J]. Journal of Geophysical Research: Space Physics, 2014, 119(3): 2079-2089 doi: 10.1002/2013JA019481
|
[111] |
PEDATELLA N M. Influence of stratosphere polar vortex variability on the mesosphere, thermosphere, and ionosphere[J]. Journal of Geophysical Research: Space Physics, 2023, 128(7): e2023JA031495 doi: 10.1029/2023JA031495
|
[112] |
PEDATELLA N M. Impact of the lower atmosphere on the ionosphere response to a geomagnetic superstorm[J]. Geophysical Research Letters, 2016, 43(18): 9383-9389 doi: 10.1002/2016GL070592
|
[113] |
SHIM J S, SONG I S, JEE G, et al. Validation of ionospheric specifications during geomagnetic storms: TEC and foF2 during the 2013 March storm event-II[J]. Space Weather, 2023, 21(5): e2022SW003388 doi: 10.1029/2022SW003388
|
[114] |
SCHERLLIN-PIRSCHER B, DESER C, HO S P, et al. The vertical and spatial structure of ENSO in the upper troposphere and lower stratosphere from GPS radio occultation measurements[J]. Geophysical Research Letters, 2012, 39(20): L20801
|
[115] |
TAGUCHI M. Observed connection of the stratospheric quasi-biennial oscillation with El Niño–Southern Oscillation in radiosonde data[J]. Journal of Geophysical Research: Atmospheres, 2010, 115(D18): D18120
|
[116] |
HARDIMAN S C, BUTCHART N, HAYNES P H, et al. A note on forced versus internal variability of the stratosphere[J]. Geophysical Research Letters, 2007, 34(12): L12803
|
[117] |
HARDIMAN S C, LIN P, SCAIFE A, et al. The influence of dynamical variability on the observed Brewer-Dobson circulation trend[J]. Geophysical Research Letters, 2017, 44(6): 2885-2892 doi: 10.1002/2017GL072706
|
[118] |
DOMEISEN D I V, GARFINKEL C I, BUTLER A H. The teleconnection of El Niño Southern Oscillation to the stratosphere[J]. Reviews of Geophysics, 2019, 57(1): 5-47 doi: 10.1029/2018RG000596
|
[119] |
GURUBARAN S, RAJARAM R, NAKAMURA T, et al. Interannual variability of diurnal tide in the tropical mesopause region: a signature of the El Nino-Southern Oscillation (ENSO)[J]. Geophysical Research Letters, 2005, 32(13): L13805
|
[120] |
VITHARANA A, DU J, ZHU X W, et al. Numerical prediction of the migrating diurnal tide total variability in the mesosphere and lower thermosphere[J]. Journal of Geophysical Research: Space Physics, 2021, 126(11): e2021JA029588 doi: 10.1029/2021JA029588
|
[121] |
PEDATELLA N M, LIU H L. Influence of the El Niño Southern Oscillation on the middle and upper atmosphere[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(5): 2744-2755
|
[122] |
LIU H X, SUN Y Y, MIYOSHI Y, et al. ENSO effects on MLT diurnal tides: A 21-year reanalysis data-driven GAIA model simulation[J]. Journal of Geophysical Research: Space Physics, 2017, 122(5): 5539-5549 doi: 10.1002/2017JA024011
|
[123] |
HAMPSON J, HAYNES P. Influence of the Equatorial QBO on the extratropical stratosphere[J]. Journal of the Atmospheric Sciences, 2006, 63(3): 936-951 doi: 10.1175/JAS3657.1
|
[124] |
COLLIMORE C C, MARTIN D W, HITCHMAN M H, et al. On the relationship between the QBO and tropical deep convection[J]. Journal of Climate, 2003, 16(15): 2552-2568 doi: 10.1175/1520-0442(2003)016<2552:OTRBTQ>2.0.CO;2
|
[125] |
LASKAR F L, CHAU J L, STOBER G, et al. Quasi-biennial oscillation modulation of the middle- and high-latitude mesospheric semidiurnal tides during August–September[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(5): 4869-4879
|
[126] |
WANG J Y, LI N, YI W, et al. The impact of quasi-biennial oscillation (QBO) disruptions on diurnal tides over the low- and mid-latitude mesosphere and lower thermosphere (MLT) region observed by a meteor radar chain[J]. Atmospheric Chemistry and Physics, 2024, 24(23): 13299-13315 doi: 10.5194/acp-24-13299-2024
|
[127] |
GELLER M A, ZHOU T H, SHINDELL D, et al. Modeling the QBO—improvements resulting from higher-model vertical resolution[J]. Journal of Advances in Modeling Earth Systems, 2016, 8(3): 1092-1105 doi: 10.1002/2016MS000699
|
[128] |
VINCENT R A, KOVALAM S, FRITTS D C, et al. Long-term MF radar observations of solar tides in the low-latitude mesosphere: interannual variability and comparisons with the GSWM[J]. Journal of Geophysical Research, 1998, 103(D8): 8667-8683 doi: 10.1029/98JD00482
|
[129] |
MAYR H G, MENGEL J G, WOLFF C L, et al. QBO as a potential amplifier of solar cycle influence[J]. Geophysical Research Letters, 2006, 33(5): L05812
|
[130] |
RAO V N, TSUDA T, RIGGIN D M, et al. Long-term variability of mean winds in the mesosphere and lower thermosphere at low latitudes[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(A10): A10312
|
[131] |
CHEN P R. Evidence of the ionospheric response to the QBO[J]. Geophysical Research Letters, 1992, 19(11): 1089-1092 doi: 10.1029/91GL01564
|
[132] |
MALINIEMI V, ASIKAINEN T, MURSULA K. Effect of geomagnetic activity on the northern annular mode: QBO dependence and the Holton-Tan relationship[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(17): 10,043-10,055 doi: 10.1002/2015JD024460
|
[133] |
ECHER E. On the quasi-biennial oscillation (QBO) signal in the foF2 ionospheric parameter[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2007, 69(4/5): 621-627
|
[134] |
SUN R D, GU S Y, DOU X K, et al. The impact of the quasi-biennial oscillation on the mesosphere and ionosphere[J]. Journal of Geophysical Research: Atmospheres, 2022, 127(5): e2021JA029920
|
[135] |
BUTLER A H, SJOBERG J P, SEIDEL D J, et al. A sudden stratospheric warming compendium[J]. Earth System Science Data, 2017, 9(1): 63-76 doi: 10.5194/essd-9-63-2017
|
[136] |
BALDWIN M P, AYARZAGÜENA B, BIRNER T, et al. Sudden stratospheric warmings[J]. Reviews of Geophysics, 2021, 59(1): e2020RG000708 doi: 10.1029/2020RG000708
|
[137] |
KING A D, BUTLER A H, JUCKER M, et al. Observed relationships between sudden stratospheric warmings and European climate extremes[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(24): 13943-13961 doi: 10.1029/2019JD030480
|
[138] |
LASKAR F I, MCCORMACK J P, CHAU J L, et al. Interhemispheric meridional circulation during sudden stratospheric warming[J]. Journal of Geophysical Research: Space Physics, 2019, 124(8): 7112-7122 doi: 10.1029/2018JA026424
|
[139] |
GONG Y, LI C, MA Z, et al. Study of the quasi-5-day wave in the MLT region by a meteor radar chain[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(17): 9474-9487 doi: 10.1029/2018JD029355
|
[140] |
LUO J H, GONG Y, MA Z, et al. Long-term variation of lunar semidiurnal tides in the MLT region revealed by a meteor radar chain[J]. Journal of Geophysical Research: Space Physics, 2022, 127(9): e2022JA030616 doi: 10.1029/2022JA030616
|
[141] |
OBERHEIDE J. Day-to-day variability of the semidiurnal tide in the F-region ionosphere during the January 2021 SSW from COSMIC-2 and ICON[J]. Geophysical Research Letters, 2022, 49(17): e2022GL100369 doi: 10.1029/2022GL100369
|
[142] |
GAN Q, OBERHEIDE J, GONCHARENKO L, et al. GOLD synoptic observations of quasi-6-day wave modulations of post-sunset equatorial ionization anomaly during the September 2019 Antarctic sudden stratospheric warming[J]. Geophysical Research Letters, 2023, 50(12): e2023GL103386 doi: 10.1029/2023GL103386
|
[143] |
张雯敏, 马铮, 龚韵, 等. 北京上空电离层8小时潮汐波对2018年SSW的响应研究[J]. 地球物理学报, 2022, 65(6): 1921-1930
ZHANG Wenmin, MA Zheng, GONG Yun, et al. Response of ionospheric terdiurnal tides to the 2018 SSW over Beijing[J]. Chinese Journal of Geophysics, 2022, 65(6): 1921-1930
|
[144] |
马铮, 龚韵, 张绍东. 平流层爆发性增温期间中高层大气行星波研究进展[J]. 地球与行星物理论评, 2024, 55(1): 109-119
MA Zheng, GONG Yun, ZHANG Shaodong. Recent research progress on planetary waves in the middle and upper atmosphere during sudden stratospheric warmings[J]. Reviews of Geophysics and Planetary Physics, 2024, 55(1): 109-119
|
[145] |
ROBLE R G, DICKINSON R E. How will changes in carbon dioxide and methane modify the mean structure of the mesosphere and thermosphere?[J]. Geophysical Research Letters, 1989, 16(12): 1441-1444 doi: 10.1029/GL016i012p01441
|
[146] |
SOLOMON S C, LIU H L, MARSH D R, et al. Whole atmosphere simulation of anthropogenic climate change[J]. Geophysical Research Letters, 2018, 45(3): 1567-1576 doi: 10.1002/2017GL076950
|
[147] |
MCINERNEY J M, QIAN L Y, LIU H L, et al. Climate change in the thermosphere and ionosphere from the early twentieth century to early twenty-first century simulated by the whole atmosphere community climate model—eXtended[J]. Journal of Geophysical Research: Atmospheres, 2024, 129(3): e2023JD039397 doi: 10.1029/2023JD039397
|
[148] |
CAI Y, YUE X, ZHOU X, et al. Simulated long-term evolution of the thermosphere during the Holocene – Part 1: neutral density and temperature[J]. Atmospheric Chemistry and Physics, 2023, 23(9): 5009-5021 doi: 10.5194/acp-23-5009-2023
|
[149] |
ZHOU X, YUE X A, CAI Y H, et al. Simulated long-term evolution of the thermosphere during the Holocene – Part 2: Circulation and solar tides[J]. Atmospheric Chemistry and Physics, 2023, 23(11): 6383-6393 doi: 10.5194/acp-23-6383-2023
|
[150] |
杜晓辉, 张学民. SWARM卫星观测到的一次台风消亡产生的电离层扰动[J]. 地球与行星物理论评, 2021, 52(6): 662-674
DU Xiaohui, ZHANG Xuemin. An ionospheric disturbance caused by the disintegration of a typhoon observed by the SWARM satellites[J]. Reviews of Geophysics and Planetary Physics, 2021, 52(6): 662-674
|
[151] |
王赤, 窦贤康, 龚建村, 等. 空间物理学最新进展与展望[J]. 空间科学学报, 2021, 41(1): 1-9
WANG Chi, DOU Xiankang, GONG Jiancun, et al. Recent advances and prospect in space physics[J]. Chinese Journal of Space Science, 2021, 41(1): 19
|
[152] |
CHANG P, ZHANG S Q, DANABASOGLU G, et al. An unprecedented set of high-resolution earth system simulations for understanding multiscale interactions in climate variability and change[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(12): e2020MS002298 doi: 10.1029/2020MS002298
|
[153] |
HOHENEGGER C, KORN P, LINARDAKIS L, et al. ICON-Sapphire: simulating the components of the earth system and their interactions at kilometer and subkilometer scales[J]. Geoscientific Model Development, 2023, 16(2): 779-811 doi: 10.5194/gmd-16-779-2023
|
[154] |
RICHTER J H, GLANVILLE A A, EDWARDS J, et al. Subseasonal earth system prediction with CESM2[J]. Weather and Forecasting, 2022, 37(6): 797-815 doi: 10.1175/WAF-D-21-0163.1
|
[155] |
MCCORMACK J P, HARVEY V L, RANDALL C E, et al. Intercomparison of middle atmospheric meteorological analyses for the northern hemisphere winter 2009-2010[J]. Atmospheric Chemistry and Physics, 2021, 21(23): 17577-17605 doi: 10.5194/acp-21-17577-2021
|