Turn off MathJax
Article Contents
SHENG Zheng, GUO Sheng, LENG Hongze, WANG Sicheng, SONG Junqiang. Major Advances in Aerospace Transition Zone Atmospheric Dynamics Research (in Chinese). Chinese Journal of Space Science, 2025, 45(4): 1-14 doi: 10.11728/cjss2025.04.2025-yg01
Citation: SHENG Zheng, GUO Sheng, LENG Hongze, WANG Sicheng, SONG Junqiang. Major Advances in Aerospace Transition Zone Atmospheric Dynamics Research (in Chinese). Chinese Journal of Space Science, 2025, 45(4): 1-14 doi: 10.11728/cjss2025.04.2025-yg01

Major Advances in Aerospace Transition Zone Atmospheric Dynamics Research

doi: 10.11728/cjss2025.04.2025-yg01 cstr: 32142.14.cjss.2025-yg01
  • Received Date: 2025-01-18
  • Rev Recd Date: 2025-06-10
  • Available Online: 2025-06-10
  • The transitional zone bridging the domains of astronautics and aeronautics refers to the region between traditional aviation and space activities, specifically the atmospheric layer from 20 km to 150 km above the Earth’s surface. With the accelerated development of aerospace integrated space environment services, the modeling and forecasting of atmospheric dynamics in the aerospace transition zone have received increasing attention from various disciplines, while significant progress has been made on the microphysical processes and mechanisms of the aerospace transition zone atmospheric disturbances. This study reviews recent advances in atmospheric dynamics research for the aerospace transition zone. It summarizes studies on how solar radiation and polar particle precipitation affect this region within the Sun-solar wind-magnetosphere coupling chain. Then, we focus on summarizing the research progress of the coupling between Earth activities-lower atmosphere and the aerospace transition zone by four aspects of gravity waves, planetary waves, tidal waves, and typical lower atmospheric activities. Finally, it looks forward to the future development prospects of the aerospace transition zone and several key issues that need to be solved, providing a certain reference for scholars in atmospheric science and space physics.

     

  • loading
  • [1]
    刘有建, 李建成, 徐新禹等. 超低轨卫星星座恢复短周期时变重力场的模拟分析[J/OL]. 武汉大学学报(信息科学版), (2024-05-15). https://doi.org/10.13203/j.whugis20240047

    LIU Youjian, LI Jiancheng, XU Xinyu, et al. Simulation analysis of short-period time-varying gravity field in recovery of very-low orbit satellite constellation[J/OL]. Geomatics and Information Science of Wuhan University, (2024-05-15). https://doi.org/10.13203/j.whugis20240047
    [2]
    靳旭红, 黄飞, 张俊, 等. 上层大气层飞行器研究进展及气动技术挑战[J]. 航空学报, 2024, 45(22): 030254

    JIN Xuhong, HUANG Fei, ZHANG Jun, et al. Spacecraft in upper atmosphere: Research development and aerodynamic challenges[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(22): 030254
    [3]
    任德馨. 热层大气对太阳辐射变化的响应机制及预报研究[D]. 合肥: 中国科学技术大学, 2021

    REN Dexin. An Investigation on Thermospheric Response to Solar Flux Changes and Data Assimilation-Based Thermospheric Prediction[D]. Hefei: University of Science and Technology of China, 2021
    [4]
    BORTHAKUR M, SiNNHUBER M, LAENG A, et al. Impact of chlorine ion chemistry on ozone loss in the middle atmosphere during very large solar proton events[J]. Atmospheric Chemistry and Physics, 2023, 23(20): 12985-13013 doi: 10.5194/acp-23-12985-2023
    [5]
    SCHMIDT C, KÜCHELBACHER L, WÜST S, et al. OH airglow observations with two identical spectrometers: benefits of increased data homogeneity in the identification of variations induced by the 11-year solar cycle, the QBO, and other factors[J]. Atmospheric Measurement Techniques, 2023, 16(19): 4331-4356 doi: 10.5194/amt-16-4331-2023
    [6]
    KALICINSKY C, KNIELING P, KOPPMANN R, et al. Long-term dynamics of OH * temperatures over central Europe: trends and solar correlations[J]. Atmospheric Chemistry and Physics, 2016, 16(23): 15033-15047 doi: 10.5194/acp-16-15033-2016
    [7]
    FYTTERER T, SANTEE M L, SINNHUBER M, et al. The 27-day solar rotational effect on mesospheric nighttime OH and O3 observations induced by geomagnetic activity[J]. Journal of Geophysical Research: Space Physics, 2015, 120(9): 7926-7936 doi: 10.1002/2015JA021183
    [8]
    LEDNYTS'KYY O, VON SAVIGNY C, WEBER M. Sensitivity of equatorial atomic oxygen in the MLT region to the 11-year and 27-day solar cycles[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2017, 162: 136-150 doi: 10.1016/j.jastp.2016.11.003
    [9]
    THOMAS G E, THURAIRAJAH B, HERVIG M E, et al. Solar-induced 27-day variations of mesospheric temperature and water vapor from the AIM SOFIE experiment: drivers of polar mesospheric cloud variability[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2015, 134: 56-68 doi: 10.1016/j.jastp.2015.09.015
    [10]
    NEWNHAM D A, RODGER C J, MARSH D R, et al. Spatial distributions of nitric oxide in the Antarctic wintertime middle atmosphere during geomagnetic storms[J]. Journal of Geophysical Research: Space Physics, 2020, 125(7): e2020JA027846 doi: 10.1029/2020JA027846
    [11]
    HENDRICKX K, MEGNER L, GUMBEL J, et al. Observation of 27-day solar cycles in the production and mesospheric descent of EPP-produced NO[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(10): 8978-8988
    [12]
    HOOD L. Lagged response of tropical tropospheric temperature to solar ultraviolet variations on intraseasonal time scales[J]. Geophysical Research Letters, 2016, 43(8): 4066-4075 doi: 10.1002/2016GL068855
    [13]
    RONG P, VON SAVIGNY C, ZHANG C M, et al. Response of middle atmospheric temperature to the 27 d solar cycle: an analysis of 13 years of microwave limb sounder data[J]. Atmospheric Chemistry and Physics, 2020, 20(3): 1737-1755 doi: 10.5194/acp-20-1737-2020
    [14]
    SHINDELL D T, FALUVEGI G, SCHMIDT G A. Influences of solar forcing at ultraviolet and longer wavelengths on climate[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(7): e2019JD031640 doi: 10.1029/2019JD031640
    [15]
    ROBERT C E, VON SAVIGNY C, RAHPOE N, et al. First evidence of a 27-day solar signature in noctilucent cloud occurrence frequency[J]. Journal of Geophysical Research: Atmospheres, 2010, 115(D1): D00I12
    [16]
    THURAIRAJAH B, THOMAS G E, VON SAVIGNY C, et al. Solar-induced 27-day variations of polar mesospheric clouds from the AIM SOFIE and CIPS experiments[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2017, 162: 122-135 doi: 10.1016/j.jastp.2016.09.008
    [17]
    HERVIG M E, SISKIND D E, BAILEY S M, et al. The missing solar cycle response of the polar summer mesosphere[J]. Geophysical Research Letters, 2019, 46(16): 10132-10139 doi: 10.1029/2019GL083485
    [18]
    THIÉBLEMONT R, MATTHES K, OMRANI N E, et al. Solar forcing synchronizes decadal North Atlantic climate variability[J]. Nature Communications, 2015, 6(1): 8268 doi: 10.1038/ncomms9268
    [19]
    DREWS A, HUO W J, MATTES K, et al. The Sun's role in decadal climate predictability in the North Atlantic[J]. Atmospheric Chemistry and Physics, 2022, 22(12): 7893-7904 doi: 10.5194/acp-22-7893-2022
    [20]
    CHIODO G, OEHRLEIN J, POLVANI L M, et al. Insignificant influence of the 11-year solar cycle on the North Atlantic Oscillation[J]. Nature Geoscience, 2019, 12(2): 94-99 doi: 10.1038/s41561-018-0293-3
    [21]
    刘立波, 陈一定, 张瑞龙, 等. 电离层日变化特性研究简述[J]. 地球与行星物理论评, 2021, 52(6): 647-661

    LIU Libo, CHEN Yiding, ZHANG Ruilong, et al. Some investigations of ionospheric diurnal variation[J]. Reviews of Geophysics and Planetary Physics, 2021, 52(6): 647-661
    [22]
    MAKSYUTIN S V, SHERSTYUKOV O N. Dependence of E-sporadic layer response on solar and geomagnetic activity variations from its ion composition[J]. Advances in Space Research, 2005, 35(8): 1496-1499 doi: 10.1016/j.asr.2005.05.062
    [23]
    ZHANG Y B, WU J, GUO L X, et al. Influence of solar and geomagnetic activity on sporadic-E layer over low, mid and high latitude stations[J]. Advances in Space Research, 2015, 55(5): 1366-1371 doi: 10.1016/j.asr.2014.12.010
    [24]
    WU D L. Ionospheric S4 scintillations from GNSS radio occultation (RO) at slant path[J]. Remote Sensing, 2020, 12(15): 2373 doi: 10.3390/rs12152373
    [25]
    NIU J, WENG L B, MENG X, et al. Morphology of ionospheric Sporadic E layer intensity based on COSMIC occultation data in the midlatitude and low-latitude regions[J]. Journal of Geophysical Research: Space Physics, 2019, 124(6): 4796-4808 doi: 10.1029/2019JA026828
    [26]
    BERGSSON B, SYNDERGAARD S. Global temporal and spatial variations of ionospheric sporadic-E derived from radio occultation measurements[J]. Journal of Geophysical Research: Space Physics, 2022, 127(4): e2022JA030296 doi: 10.1029/2022JA030296
    [27]
    ANDRIOLI V F, XU J, BATISTA P P, et al. New findings relating tidal variability and solar activity in the low latitude MLT region[J]. Journal of Geophysical Research: Space Physics, 2022, 127(3): e2021JA030239 doi: 10.1029/2021JA030239
    [28]
    ZHANG Y B, PENG H Y, JIN R M, et al. The characteristics and simulation of sporadic E layers in ascending and descending phases of the solar cycle at mid-latitude stations[J]. Journal of Geophysical Research: Space Physics, 2025, 130(1): e2024JA033356 doi: 10.1029/2024JA033356
    [29]
    YAO Y B, ZHAI C Z, KONG J, et al. Contribution of solar radiation and geomagnetic activity to global structure of 27-day variation of ionosphere[J]. Journal of Geodesy, 2017, 91(11): 1299-1311 doi: 10.1007/s00190-017-1026-x
    [30]
    CHAKRABORTY S, PALIT S, DEB S, et al. Modeling of the variability of D-region ionospheric electron density during solar cycle-24[J]. Journal of Geophysical Research: Space Physics, 2024, 129(10): e2024JA032700 doi: 10.1029/2024JA032700
    [31]
    EMMERT J T, MANNUCCI A J, MCDONALD S E, et al. Attribution of interminimum changes in global and hemispheric total electron content[J]. Journal of Geophysical Research: Space Physics, 2017, 122(2): 2424-2439 doi: 10.1002/2016JA023680
    [32]
    GEOFFREY A, EMIRANT B, EDWARD J, et al. Modeling of GPS total electron content over the African low-latitude region using empirical orthogonal functions[J]. Annales Geophysicae, 2019, 37(1): 65-76 doi: 10.5194/angeo-37-65-2019
    [33]
    HE Z H, XU J Y, DAI L, et al. Solar activity effects on the near‐Earth space regions during the descending phase of solar cycle 24[J]. Journal of Geophysical Research: Space Physics, 2024, 129(11): e2024JA032860 doi: 10.1029/2024JA032860
    [34]
    HOUSEHOLDER I M, DUDERSTADT K A, PETTIT J M, et al. Comparisons of energetic electron observations between FIREBIRD-II CubeSats and POES/MetOp satellites from 2018 to 2020[J]. Space Weather, 2024, 22(12): e2024SW004056 doi: 10.1029/2024SW004056
    [35]
    XUE D B, WU L X, XU T H, et al. Space weather effects on transportation systems: a review of current understanding and future outlook[J]. Space Weather, 2024, 22(12): e2024SW004055 doi: 10.1029/2024SW004055
    [36]
    TINSLEY B A. Solar activity, weather, and Climate: the elusive connection[J]. Bulletin of the American Meteorological Society, 2023, 104(12): E2171-E2191 doi: 10.1175/BAMS-D-23-0065.1
    [37]
    JIA J, MURBERG L E, LØVSET T, et al. Energetic particle precipitation influences global secondary ozone distribution[J]. Communications Earth :Times New Roman;">& Environment, 2024, 5(1): 270
    [38]
    SZELA̧G M E, MARSH D R, VERRONEN P T, et al. Ozone impact from solar energetic particles cools the polar stratosphere[J]. Nature Communications, 2022, 13(1): 6883 doi: 10.1038/s41467-022-34666-y
    [39]
    雷久侯, 李若曦, 任德馨, 等. 热层大气密度反演与建模研究进展[J]. 地球与行星物理论评(中英文), 2023, 54(4): 434-454

    LEI Jiuhou, LI Ruoxi, REN Dexin, et al. Recent progress on the retrieval and modeling of thermosphere mass density[J]. Reviews of Geophysics and Planetary Physics, 2023, 54(4): 434-454
    [40]
    HE Y, ZHU X, SHENG Z, et al. Statistical Characteristics of Inertial Gravity Waves Over a Tropical Station in the Western Pacific Based on High-Resolution GPS Radiosonde Soundings [J]. Journal of Geophysical Research: Atmosphere. 126(11): e2021JD034719
    [41]
    ZHANG S P, SALAH J E, MITCHELL N, et al. Responses of the mesospheric wind at high latitudes to the April 2002 space storm[J]. Geophysical Research Letters, 2003, 30(23): 2225
    [42]
    QIAN L Y, SOLOMON S C, MLYNCZAK M G. Model simulation of thermospheric response to recurrent geomagnetic forcing[J]. Journal of Geophysical Research: Space Physics, 2010, 115(A10): A10301
    [43]
    宋茜, 丁锋, 万卫星, 等. 2011年5月28日磁暴期间中国地区大尺度电离层行进式扰动的GPS台网监测[J]. 中国科学: 地球科学, 2013, 43(4): 513-522

    Song Q, Ding F, Wan W X, et al. Monitoring traveling ionospheric disturbances using the GPS network around China during the geomagnetic storm on 28 May 2011. Science China: Earth Sciences, 2013, 56: 718–726
    [44]
    JIANG G Y, WANG W B, XU J Y, et al. Responses of the lower thermospheric temperature to the 9-day and 13.5-day oscillations of recurrent geomagnetic activity[J]. Journal of Geophysical Research: Space Physics, 2014, 119(6): 4841-4859 doi: 10.1002/2013JA019406
    [45]
    YI W, REID I M, XUE X H, et al. First observations of Antarctic mesospheric tidal wind responses to recurrent geomagnetic activity[J]. Geophysical Research Letters, 2021, 48(4): e2020GL089957 doi: 10.1029/2020GL089957
    [46]
    LI Y X, CHEN G, ZHANG S D, et al. Observational evidence for the neutral wind responses in the mid-latitude lower thermosphere to the strong geomagnetic activity[J]. Space Weather, 2024, 22(9): e2023SW003830 doi: 10.1029/2023SW003830
    [47]
    KAM H, KWAK Y S, LEE C, et al. Response of meteor plasma trails observed by meteor radar to geomagnetic activity[J]. Geophysical Research Letters, 2023, 50(6): e2022GL102636 doi: 10.1029/2022GL102636
    [48]
    MARTINEZ B C, LU X. Quantifying day-to-day variability of O/N2 and its correlation with geomagnetic activity using GOLD[J]. Frontiers in Astronomy and Space Sciences, 2023, 10: 1129279 doi: 10.3389/fspas.2023.1129279
    [49]
    GU S Y, QI J H, ZHOU C, et al. Tidal variations in the ionosphere and mesosphere over eastern China during 2014[J]. Journal of Geophysical Research: Space Physics, 2020, 125(2): e2019JA027526 doi: 10.1029/2019JA027526
    [50]
    FULLER-ROWELL T J, MILLWARD G H, RICHMOND A D, et al. Storm-time changes in the upper atmosphere at low latitudes[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2002, 64(12/14): 1383-1391
    [51]
    GARDNER L C, SCHUNK R W. Generation of traveling atmospheric disturbances during pulsating geomagnetic storms[J]. Journal of Geophysical Research: Space Physics, 2010, 115(A8): A08314
    [52]
    GAN Q, EASTES R W, WU Y J, et al. Thermospheric responses to the 3 and 4 November 2021 geomagnetic storm during the main and recovery phases as observed by NASA’s GOLD and ICON missions[J]. Geophysical Research Letters, 2024, 51(1): e2023GL106529 doi: 10.1029/2023GL106529
    [53]
    MERIWETHER J W. Thermospheric dynamics at low and mid-latitudes during magnetic storm activity[M]//KINTNER JR P M, COSTER A J, FULLER-ROWELL T, et al. Midlatitude Ionospheric Dynamics and Disturbances. Washington: AGU, 2008, 181: 201-219
    [54]
    LI J Y, WANG W B, LU J Y, et al. On the responses of mesosphere and lower thermosphere temperatures to geomagnetic storms at low and middle latitudes[J]. Geophysical Research Letters, 2018, 45(19): 10128-10137
    [55]
    LI J Y, WANG W B, LU J Y, et al. A modeling study of the responses of mesosphere and lower thermosphere winds to geomagnetic storms at middle latitudes[J]. Journal of Geophysical Research: Space Physics, 2019, 124(5): 3666-3680 doi: 10.1029/2019JA026533
    [56]
    ZHANG X F, LIU L B, LIU S T. Dependence of thermospheric zonal winds on solar flux, geomagnetic activity, and hemisphere as measured by CHAMP[J]. Journal of Geophysical Research: Space Physics, 2017, 122(8): 8893-8914 doi: 10.1002/2016JA023715
    [57]
    EVANS J S, CORREIRA J, LUMPE J D, et al. GOLD observations of the thermospheric response to the 10-12 May 2024 Gannon superstorm[J]. Geophysical Research Letters, 2024, 51(16): e2024GL110506 doi: 10.1029/2024GL110506
    [58]
    DÍAZ J. Monitoring May 2024 solar and geomagnetic storm using broadband seismometers[J]. Scientific Reports, 2024, 14(1): 30066 doi: 10.1038/s41598-024-81079-6
    [59]
    SERGEEV V A, STEPANOV N A, OGAWA Y, et al. Local time distribution and activity dependence of extreme electron densities in the auroral D-region as an image of energy-dependent energetic electron precipitation[J]. Journal of Geophysical Research: Space Physics, 2024, 129(10): e2024JA032913 doi: 10.1029/2024JA032913
    [60]
    FRITTS D C, LAUGHMAN B, WANG L, et al. Gravity wave dynamics in a mesospheric inversion layer: 1. reflection, trapping, and instability dynamics[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(2): 626-648 doi: 10.1002/2017JD027440
    [61]
    LAY E H, SHAO X M, KENDRICK A K, et al. Ionospheric acoustic and gravity waves associated with midlatitude thunderstorms[J]. Journal of Geophysical Research: Space Physics, 2015, 120(7): 6010-6020 doi: 10.1002/2015JA021334
    [62]
    DU Y, ZHANG F Q. Banded convective activity associated with mesoscale gravity waves over southern China[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(4): 1912-1930 doi: 10.1029/2018JD029523
    [63]
    WANG L, BURGMANN R. Statistical significance of precursory gravity changes before the 2011 Mw 9.0 Tohoku-Oki earthquake[J]. Geophysical Research Letters, 2019, 46(13): 7323-7332 doi: 10.1029/2019GL082682
    [64]
    ALEXANDER M J. Global and seasonal variations in three-dimensional gravity wave momentum flux from satellite limb-sounding temperatures[J]. Geophysical Research Letters, 2015, 42(16): 6860-6867 doi: 10.1002/2015GL065234
    [65]
    FIGUEIREDO C A O B, VADAS S L, BECKER E, et al. Secondary gravity waves from the Tonga volcano eruption: observation and modeling over New Zealand and Australia[J]. Journal of Geophysical Research: Space Physics, 2023, 128(10): e2023JA031476 doi: 10.1029/2023JA031476
    [66]
    VADAS S L, NICOLLS M J. The phases and amplitudes of gravity waves propagating and dissipating in the thermosphere: Theory[J]. Journal of Geophysical Research: Space Physics, 2012, 117(A5): A05322
    [67]
    VADAS S L, FRITTS D C. Influence of solar variability on gravity wave structure and dissipation in the thermosphere from tropospheric convection[J]. Journal of Geophysical Research: Space Physics, 2006, 111(A10): A10S12
    [68]
    BAUMGARTEN K, GERDING M, BAUMGARTEN G, et al. Temporal variability of tidal and gravity waves during a record long 10-day continuous lidar sounding[J]. Atmospheric Chemistry and Physics, 2018, 18(1): 371-384 doi: 10.5194/acp-18-371-2018
    [69]
    SONG Y, HE Y, SHENG Z, et al. Annual/Quasi-Biennial Variability of Inertial Gravity Waves in the Tropical Western Pacific. Journal of Geophysical Research: Atmosphere. 2024, 130(6): e2024JD042094
    [70]
    MINAMIHARA Y, SATO K, TSUTSUMI M. Intermittency of gravity waves in the Antarctic troposphere and lower stratosphere revealed by the PANSY radar observation[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(15): e2020JD032543 doi: 10.1029/2020JD032543
    [71]
    NING W H, HUANG K M, ZHANG S D, et al. A statistical investigation of inertia gravity wave activity based on MST radar observations at Xianghe (116.9°E, 39.8°N), China[J]. Journal of Geophysical Research: Atmospheres, 2022, 127(1): e2021JD035315 doi: 10.1029/2021JD035315
    [72]
    CHEN Q Y, WU H K, LONG H C, et al. Comparative analysis of gravity wave characteristics in China and the United States using high vertical resolution radiosonde observations[J]. Journal of Geophysical Research: Atmospheres, 2024, 129(14): e2023JD040492 doi: 10.1029/2023JD040492
    [73]
    WANG X, WANG Y, ZHANG L F, et al. A climatology of stratospheric gravity waves induced by tropical cyclones on the northwest Pacific Ocean[J]. npj Climate and Atmospheric Science, 2024, 7(1): 155 doi: 10.1038/s41612-024-00705-2
    [74]
    WANG X, ZHANG L F, WANG Y, et al. Influences of the mid-latitude westerly trough on stratospheric gravity waves generated by typhoon Lekima (2019)[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(23): e2021JD035399 doi: 10.1029/2021JD035399
    [75]
    WANG X, ZHANG L F, WANG Y, et al. The influencing mechanism of a mid-latitude westerly trough on stratospheric gravity waves generated by Typhoon Lekima (2019)[J]. Geophysical Research Letters, 2022, 49(7): e2021GL097544 doi: 10.1029/2021GL097544
    [76]
    LIU H L. Quantifying gravity wave forcing using scale invariance[J]. Nature Communications, 2019, 10(1): 2605 doi: 10.1038/s41467-019-10527-z
    [77]
    LIU H L, LAURITZEN P H, VITT F, et al. Assessment of gravity waves from tropopause to thermosphere and ionosphere in high‐resolution WACCM‐X simulations[J]. Journal of Advances in Modeling Earth Systems, 2024, 16(6): e2023MS004024 doi: 10.1029/2023MS004024
    [78]
    MALHOTRA G, FULLER-ROWELL T, FANG T W, et al. Medium-scale thermospheric gravity waves in the high-resolution Whole Atmosphere Model: seasonal, local time, and longitudinal variations[J]. Journal of Geophysical Research: Atmospheres, 2025, 130(1): e2024JD041810 doi: 10.1029/2024JD041810
    [79]
    FRITTS D C, LUND A C, LUND T S, et al. Impacts of limited model resolution on the representation of mountain wave and secondary gravity wave dynamics in local and global models. 1: mountain waves in the stratosphere and mesosphere[J]. Journal of Geophysical Research: Atmospheres, 2022, 127(9): e2021JD035990 doi: 10.1029/2021JD035990
    [80]
    FRITTS D C, LUND A C, LUND T S, et al. Impacts of limited model resolution on the representation of mountain wave and secondary wave dynamics in local and global models: 2. mountain wave and secondary wave evolutions in the thermosphere[J]. Journal of Geophysical Research: Atmospheres, 2022, 127(9): e2021JD036035 doi: 10.1029/2021JD036035
    [81]
    CRIDDLE N R, PAUTET P D, YUAN T, et al. Evidence for Horizontal blocking and reflection of a small‐scale gravity wave in the mesosphere[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(10): e2019JD031828 doi: 10.1029/2019JD031828
    [82]
    BECKER E, VADAS S L. Explicit global simulation of gravity waves in the thermosphere[J]. Journal of Geophysical Research: Space Physics, 2020, 125(10): e2020JA028034 doi: 10.1029/2020JA028034
    [83]
    VADAS S L, BECKER E. Numerical modeling of the generation of tertiary gravity waves in the mesosphere and thermosphere during strong mountain wave events over the Southern Andes[J]. Journal of Geophysical Research: Space Physics, 2019, 124(9): 7687-7718 doi: 10.1029/2019JA026694
    [84]
    LIU H L, VADAS S L. Large-scale ionospheric disturbances due to the dissipation of convectively-generated gravity waves over Brazil[J]. Journal of Geophysical Research: Space Physics, 2013, 118(5): 2419-2427 doi: 10.1002/jgra.50244
    [85]
    VADAS S L, LIU H L. Generation of large-scale gravity waves and neutral winds in the thermosphere from the dissipation of convectively generated gravity waves[J]. Journal of Geophysical Research: Space Physics, 2009, 114(A10): A10310
    [86]
    LIU H L, LAURITZEN P H, VITT F. Impacts of gravity waves on the thermospheric circulation and composition[J]. Geophysical Research Letters, 2024, 51(3): e2023GL107453 doi: 10.1029/2023GL107453
    [87]
    PARK R S, MASTROLEMOS N, JACOBSON R A, et al. The global shape, gravity field, and libration of enceladus[J]. Journal of Geophysical Research: Planets, 2024, 129(1): e2023JE008054 doi: 10.1029/2023JE008054
    [88]
    LIU H L, WANG W, HUBA J D, et al. Atmospheric and ionospheric responses to Hunga-Tonga volcano eruption simulated by WACCM-X. Geophysical Research Letters, 2023, 50(10): e2023GL103682
    [89]
    LEE W, SONG I S, SHIM J S, et al. The impact of lower atmosphere forecast uncertainties on WACCM-X prediction of ionosphere-thermosphere system during geomagnetic storms[J]. Space Weather, 2024, 22(12): e2024SW004137 doi: 10.1029/2024SW004137
    [90]
    HE Y, ZHU X Q, SHENG Z, et al. Observations of inertia gravity waves in the western Pacific and their characteristic in the 2015/2016 quasi-biennial oscillation disruption[J]. Journal of Geophysical Research: Atmospheres, 2022, 127(22): e2022JD037208 doi: 10.1029/2022JD037208
    [91]
    ZHANG S D, YI F. A numerical study of propagation characteristics of gravity wave packets propagating in a dissipative atmosphere[J]. Journal of Geophysical Research: Atmospheres, 2002, 107(D14): 4222
    [92]
    VADAS S L, FRITTS D C. Thermospheric responses to gravity waves: influences of increasing viscosity and thermal diffusivity[J]. Journal of Geophysical Research: Space Physics, 2005, 110(D15): D15103
    [93]
    DATTA S, DAS S, SUNDA S. Secondary gravity wave propagation in tropical thermospheric region: role of varying kinematic viscosity[J]. Journal of Geophysical Research: Space Physics, 2024, 129(10): e2023JA032364 doi: 10.1029/2023JA032364
    [94]
    谷升阳. 行星尺度波动及其在大气层耦合中的作用[D]. 合肥: 中国科学技术大学, 2015

    GU S Y. Planetary Waves and Their Roles in Atmospheric Coupling[D]. Hefei: University of Science and Technology of China, 2015
    [95]
    PANCHEVA D, MUKHTAROV P, MITCHELL N J, et al. Planetary waves in coupling the stratosphere and mesosphere during the major stratospheric warming in 2003/2004[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D12): D12105
    [96]
    HE M S, FORBES J M, STOBER G, et al. Nonlinear interactions of planetary‐scale waves in mesospheric winds observed at 52°N latitude and two longitudes[J]. Geophysical Research Letters, 2024, 51(24): e2024GL110629 doi: 10.1029/2024GL110629
    [97]
    HE M S, FORBES J M. Rossby wave second harmonic generation observed in the middle atmosphere[J]. Nature Communications, 2022, 13(1): 7544 doi: 10.1038/s41467-022-35142-3
    [98]
    QIN Y S, GU S Y, DOU X K, et al. Secondary 12-day planetary wave in the mesospheric water vapor during the 2016/2017 unusual Canadian stratospheric warming[J]. Geophysical Research Letters, 2022, 49(4): e2021GL097024 doi: 10.1029/2021GL097024
    [99]
    YAMAZAKI Y, MATTHIAS V, MIYOSHI Y. Quasi-4-day wave: atmospheric manifestation of the first symmetric Rossby normal mode of zonal wavenumber 2[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(13): e2021JD034855 doi: 10.1029/2021JD034855
    [100]
    YU F R, HUANG K M, ZHANG S D, et al. Observations of eastward propagating quasi 6-day waves from the troposphere to the lower thermosphere during SSWs in early 2016[J]. Journal of Geophysical Research: Atmospheres, 2022, 127(9): e2021JD036017 doi: 10.1029/2021JD036017
    [101]
    GU S Y, LI T, DOU X K, et al. Observations of quasi-two-day wave by TIMED/SABER and TIMED/TIDI[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(4): 1624-1639 doi: 10.1002/jgrd.50191
    [102]
    WANG J C, PALO S E, FORBES J M, et al. Unusual quasi-10-day planetary wave activity and the ionospheric response during the 2019 southern hemisphere sudden stratospheric warming[J]. Journal of Geophysical Research: Space Physics, 2021, 126(6): e2021JA029286 doi: 10.1029/2021JA029286
    [103]
    FORBES J M, BRUINSMA S L, DOORNBOS E, et al. Gravity wave-induced variability of the middle thermosphere[J]. Journal of Geophysical Research: Space Physics, 2016, 121(7): 6914-6923 doi: 10.1002/2016JA022923
    [104]
    YAMAZAKI Y, MATTHIAS V, MIYOSHI Y, et al. September 2019 Antarctic sudden stratospheric warming: quasi-6-day wave burst and ionospheric effects[J]. Geophysical Research Letters, 2020, 47(1): e2019GL086577 doi: 10.1029/2019GL086577
    [105]
    HE M S. Planetary-scale MLT waves diagnosed through multi-station methods: a review[J]. Earth Planets Space, 2023, 75(1): 63 doi: 10.1186/s40623-023-01808-5
    [106]
    SIDDIQUI T A, CHAU J L, STOLLE C, et al. Migrating solar diurnal tidal variability during northern and southern hemisphere sudden stratospheric warmings[J]. Earth Planets Space, 2022, 74(1): 101 doi: 10.1186/s40623-022-01661-y
    [107]
    LIU G P, LIEBERMAN R S, HARVEY V L, et al. Tidal variations in the mesosphere and lower thermosphere before, during, and after the 2009 sudden stratospheric warming[J]. Journal of Geophysical Research: Space Physics, 2021, 126(3): e2020JA028827 doi: 10.1029/2020JA028827
    [108]
    GASPERINI F, JONES JR M, HARDING B J, et al. Direct observational evidence of altered mesosphere lower thermosphere mean circulation from a major sudden stratospheric warming[J]. Geophysical Research Letters, 2023, 50(7): e2022GL102579 doi: 10.1029/2022GL102579
    [109]
    FULLER ROWELL T J, AKMAEV R A, WU F, et al. Impact of terrestrial weather on the upper atmosphere[J]. Geophysical Research Letters, 2008, 35(9): L09808
    [110]
    WANG H, AKMAEV R A, FANG T W, et al. First forecast of a sudden stratospheric warming with a coupled whole-atmosphere/ionosphere model IDEA[J]. Journal of Geophysical Research: Space Physics, 2014, 119(3): 2079-2089 doi: 10.1002/2013JA019481
    [111]
    PEDATELLA N M. Influence of stratosphere polar vortex variability on the mesosphere, thermosphere, and ionosphere[J]. Journal of Geophysical Research: Space Physics, 2023, 128(7): e2023JA031495 doi: 10.1029/2023JA031495
    [112]
    PEDATELLA N M. Impact of the lower atmosphere on the ionosphere response to a geomagnetic superstorm[J]. Geophysical Research Letters, 2016, 43(18): 9383-9389 doi: 10.1002/2016GL070592
    [113]
    SHIM J S, SONG I S, JEE G, et al. Validation of ionospheric specifications during geomagnetic storms: TEC and foF2 during the 2013 March storm event-II[J]. Space Weather, 2023, 21(5): e2022SW003388 doi: 10.1029/2022SW003388
    [114]
    SCHERLLIN-PIRSCHER B, DESER C, HO S P, et al. The vertical and spatial structure of ENSO in the upper troposphere and lower stratosphere from GPS radio occultation measurements[J]. Geophysical Research Letters, 2012, 39(20): L20801
    [115]
    TAGUCHI M. Observed connection of the stratospheric quasi-biennial oscillation with El Niño–Southern Oscillation in radiosonde data[J]. Journal of Geophysical Research: Atmospheres, 2010, 115(D18): D18120
    [116]
    HARDIMAN S C, BUTCHART N, HAYNES P H, et al. A note on forced versus internal variability of the stratosphere[J]. Geophysical Research Letters, 2007, 34(12): L12803
    [117]
    HARDIMAN S C, LIN P, SCAIFE A, et al. The influence of dynamical variability on the observed Brewer-Dobson circulation trend[J]. Geophysical Research Letters, 2017, 44(6): 2885-2892 doi: 10.1002/2017GL072706
    [118]
    DOMEISEN D I V, GARFINKEL C I, BUTLER A H. The teleconnection of El Niño Southern Oscillation to the stratosphere[J]. Reviews of Geophysics, 2019, 57(1): 5-47 doi: 10.1029/2018RG000596
    [119]
    GURUBARAN S, RAJARAM R, NAKAMURA T, et al. Interannual variability of diurnal tide in the tropical mesopause region: a signature of the El Nino-Southern Oscillation (ENSO)[J]. Geophysical Research Letters, 2005, 32(13): L13805
    [120]
    VITHARANA A, DU J, ZHU X W, et al. Numerical prediction of the migrating diurnal tide total variability in the mesosphere and lower thermosphere[J]. Journal of Geophysical Research: Space Physics, 2021, 126(11): e2021JA029588 doi: 10.1029/2021JA029588
    [121]
    PEDATELLA N M, LIU H L. Influence of the El Niño Southern Oscillation on the middle and upper atmosphere[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(5): 2744-2755
    [122]
    LIU H X, SUN Y Y, MIYOSHI Y, et al. ENSO effects on MLT diurnal tides: A 21-year reanalysis data-driven GAIA model simulation[J]. Journal of Geophysical Research: Space Physics, 2017, 122(5): 5539-5549 doi: 10.1002/2017JA024011
    [123]
    HAMPSON J, HAYNES P. Influence of the Equatorial QBO on the extratropical stratosphere[J]. Journal of the Atmospheric Sciences, 2006, 63(3): 936-951 doi: 10.1175/JAS3657.1
    [124]
    COLLIMORE C C, MARTIN D W, HITCHMAN M H, et al. On the relationship between the QBO and tropical deep convection[J]. Journal of Climate, 2003, 16(15): 2552-2568 doi: 10.1175/1520-0442(2003)016<2552:OTRBTQ>2.0.CO;2
    [125]
    LASKAR F L, CHAU J L, STOBER G, et al. Quasi-biennial oscillation modulation of the middle- and high-latitude mesospheric semidiurnal tides during August–September[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(5): 4869-4879
    [126]
    WANG J Y, LI N, YI W, et al. The impact of quasi-biennial oscillation (QBO) disruptions on diurnal tides over the low- and mid-latitude mesosphere and lower thermosphere (MLT) region observed by a meteor radar chain[J]. Atmospheric Chemistry and Physics, 2024, 24(23): 13299-13315 doi: 10.5194/acp-24-13299-2024
    [127]
    GELLER M A, ZHOU T H, SHINDELL D, et al. Modeling the QBO—improvements resulting from higher-model vertical resolution[J]. Journal of Advances in Modeling Earth Systems, 2016, 8(3): 1092-1105 doi: 10.1002/2016MS000699
    [128]
    VINCENT R A, KOVALAM S, FRITTS D C, et al. Long-term MF radar observations of solar tides in the low-latitude mesosphere: interannual variability and comparisons with the GSWM[J]. Journal of Geophysical Research, 1998, 103(D8): 8667-8683 doi: 10.1029/98JD00482
    [129]
    MAYR H G, MENGEL J G, WOLFF C L, et al. QBO as a potential amplifier of solar cycle influence[J]. Geophysical Research Letters, 2006, 33(5): L05812
    [130]
    RAO V N, TSUDA T, RIGGIN D M, et al. Long-term variability of mean winds in the mesosphere and lower thermosphere at low latitudes[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(A10): A10312
    [131]
    CHEN P R. Evidence of the ionospheric response to the QBO[J]. Geophysical Research Letters, 1992, 19(11): 1089-1092 doi: 10.1029/91GL01564
    [132]
    MALINIEMI V, ASIKAINEN T, MURSULA K. Effect of geomagnetic activity on the northern annular mode: QBO dependence and the Holton-Tan relationship[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(17): 10,043-10,055 doi: 10.1002/2015JD024460
    [133]
    ECHER E. On the quasi-biennial oscillation (QBO) signal in the foF2 ionospheric parameter[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2007, 69(4/5): 621-627
    [134]
    SUN R D, GU S Y, DOU X K, et al. The impact of the quasi-biennial oscillation on the mesosphere and ionosphere[J]. Journal of Geophysical Research: Atmospheres, 2022, 127(5): e2021JA029920
    [135]
    BUTLER A H, SJOBERG J P, SEIDEL D J, et al. A sudden stratospheric warming compendium[J]. Earth System Science Data, 2017, 9(1): 63-76 doi: 10.5194/essd-9-63-2017
    [136]
    BALDWIN M P, AYARZAGÜENA B, BIRNER T, et al. Sudden stratospheric warmings[J]. Reviews of Geophysics, 2021, 59(1): e2020RG000708 doi: 10.1029/2020RG000708
    [137]
    KING A D, BUTLER A H, JUCKER M, et al. Observed relationships between sudden stratospheric warmings and European climate extremes[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(24): 13943-13961 doi: 10.1029/2019JD030480
    [138]
    LASKAR F I, MCCORMACK J P, CHAU J L, et al. Interhemispheric meridional circulation during sudden stratospheric warming[J]. Journal of Geophysical Research: Space Physics, 2019, 124(8): 7112-7122 doi: 10.1029/2018JA026424
    [139]
    GONG Y, LI C, MA Z, et al. Study of the quasi-5-day wave in the MLT region by a meteor radar chain[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(17): 9474-9487 doi: 10.1029/2018JD029355
    [140]
    LUO J H, GONG Y, MA Z, et al. Long-term variation of lunar semidiurnal tides in the MLT region revealed by a meteor radar chain[J]. Journal of Geophysical Research: Space Physics, 2022, 127(9): e2022JA030616 doi: 10.1029/2022JA030616
    [141]
    OBERHEIDE J. Day-to-day variability of the semidiurnal tide in the F-region ionosphere during the January 2021 SSW from COSMIC-2 and ICON[J]. Geophysical Research Letters, 2022, 49(17): e2022GL100369 doi: 10.1029/2022GL100369
    [142]
    GAN Q, OBERHEIDE J, GONCHARENKO L, et al. GOLD synoptic observations of quasi-6-day wave modulations of post-sunset equatorial ionization anomaly during the September 2019 Antarctic sudden stratospheric warming[J]. Geophysical Research Letters, 2023, 50(12): e2023GL103386 doi: 10.1029/2023GL103386
    [143]
    张雯敏, 马铮, 龚韵, 等. 北京上空电离层8小时潮汐波对2018年SSW的响应研究[J]. 地球物理学报, 2022, 65(6): 1921-1930

    ZHANG Wenmin, MA Zheng, GONG Yun, et al. Response of ionospheric terdiurnal tides to the 2018 SSW over Beijing[J]. Chinese Journal of Geophysics, 2022, 65(6): 1921-1930
    [144]
    马铮, 龚韵, 张绍东. 平流层爆发性增温期间中高层大气行星波研究进展[J]. 地球与行星物理论评, 2024, 55(1): 109-119

    MA Zheng, GONG Yun, ZHANG Shaodong. Recent research progress on planetary waves in the middle and upper atmosphere during sudden stratospheric warmings[J]. Reviews of Geophysics and Planetary Physics, 2024, 55(1): 109-119
    [145]
    ROBLE R G, DICKINSON R E. How will changes in carbon dioxide and methane modify the mean structure of the mesosphere and thermosphere?[J]. Geophysical Research Letters, 1989, 16(12): 1441-1444 doi: 10.1029/GL016i012p01441
    [146]
    SOLOMON S C, LIU H L, MARSH D R, et al. Whole atmosphere simulation of anthropogenic climate change[J]. Geophysical Research Letters, 2018, 45(3): 1567-1576 doi: 10.1002/2017GL076950
    [147]
    MCINERNEY J M, QIAN L Y, LIU H L, et al. Climate change in the thermosphere and ionosphere from the early twentieth century to early twenty-first century simulated by the whole atmosphere community climate model—eXtended[J]. Journal of Geophysical Research: Atmospheres, 2024, 129(3): e2023JD039397 doi: 10.1029/2023JD039397
    [148]
    CAI Y, YUE X, ZHOU X, et al. Simulated long-term evolution of the thermosphere during the Holocene – Part 1: neutral density and temperature[J]. Atmospheric Chemistry and Physics, 2023, 23(9): 5009-5021 doi: 10.5194/acp-23-5009-2023
    [149]
    ZHOU X, YUE X A, CAI Y H, et al. Simulated long-term evolution of the thermosphere during the Holocene – Part 2: Circulation and solar tides[J]. Atmospheric Chemistry and Physics, 2023, 23(11): 6383-6393 doi: 10.5194/acp-23-6383-2023
    [150]
    杜晓辉, 张学民. SWARM卫星观测到的一次台风消亡产生的电离层扰动[J]. 地球与行星物理论评, 2021, 52(6): 662-674

    DU Xiaohui, ZHANG Xuemin. An ionospheric disturbance caused by the disintegration of a typhoon observed by the SWARM satellites[J]. Reviews of Geophysics and Planetary Physics, 2021, 52(6): 662-674
    [151]
    王赤, 窦贤康, 龚建村, 等. 空间物理学最新进展与展望[J]. 空间科学学报, 2021, 41(1): 1-9

    WANG Chi, DOU Xiankang, GONG Jiancun, et al. Recent advances and prospect in space physics[J]. Chinese Journal of Space Science, 2021, 41(1): 19
    [152]
    CHANG P, ZHANG S Q, DANABASOGLU G, et al. An unprecedented set of high-resolution earth system simulations for understanding multiscale interactions in climate variability and change[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(12): e2020MS002298 doi: 10.1029/2020MS002298
    [153]
    HOHENEGGER C, KORN P, LINARDAKIS L, et al. ICON-Sapphire: simulating the components of the earth system and their interactions at kilometer and subkilometer scales[J]. Geoscientific Model Development, 2023, 16(2): 779-811 doi: 10.5194/gmd-16-779-2023
    [154]
    RICHTER J H, GLANVILLE A A, EDWARDS J, et al. Subseasonal earth system prediction with CESM2[J]. Weather and Forecasting, 2022, 37(6): 797-815 doi: 10.1175/WAF-D-21-0163.1
    [155]
    MCCORMACK J P, HARVEY V L, RANDALL C E, et al. Intercomparison of middle atmospheric meteorological analyses for the northern hemisphere winter 2009-2010[J]. Atmospheric Chemistry and Physics, 2021, 21(23): 17577-17605 doi: 10.5194/acp-21-17577-2021
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(98) PDF Downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return