Citation: | YIN Ping, WANG Chaoyu. Ionospheric TEC Prediction Model Based on LSTM Spatio-temporal Transformer (in Chinese). Chinese Journal of Space Science, 2025, 45(5): 1-13 doi: 10.11728/cjss2025.05.2024-0117 |
[1] |
熊年禄, 唐存琛, 李行健. 电离层物理概论[M]. 武汉: 武汉大学出版社, 1999
XIONG Nianlu, TANG Cunchen, LI Xingjian. Introduction to Ionospheric Physics[M]. Wuhan: Wuhan University Press, 1999
|
[2] |
刘淑琼, 高鑫, 李长春. EEMD-RBF神经网络的电离层TEC预报模型[J]. 测绘工程, 2020, 29(3): 15-19 doi: 10.19349/j.cnki.issn1006-7949.2020.03.004
LIU Shuqiong, GAO Xin, LI Changchun. Prediction models of ionospheric TEC by EEMD and radial basis function neural network[J]. Engineering of Surveying and Mapping, 2020, 29(3): 15-19 doi: 10.19349/j.cnki.issn1006-7949.2020.03.004
|
[3] |
胡文权. 基于RBF神经网络的改进模型在电离层TEC预报中的应用[J]. 测绘与空间地理信息, 2023, 46(8): 164-167 doi: 10.3969/j.issn.1672-5867.2023.08.044
HU Wenquan. Application of improved model based on RBF neural network in Ionospheric TEC prediction[J]. Geomatics :Times New Roman;">& Spatial Information Technology, 2023, 46(8): 164-167 doi: 10.3969/j.issn.1672-5867.2023.08.044
|
[4] |
汤俊, 李垠健, 钟正宇, 等. EOF-LSTM神经网络的电离层TEC预报模型[J]. 大地测量与地球动力学, 2021, 41(9): 911-915,944 doi: 10.14075/j.jgg.2021.09.005
TANG Jun, LI Yinjian, ZHONG Zhengyu, et al. Prediction model of ionospheric TEC by EOF and LSTM neural network[J]. Journal of Geodesy and Geodynamics, 2021, 41(9): 911-915,944 doi: 10.14075/j.jgg.2021.09.005
|
[5] |
汤俊, 高鑫. MEEMD-Elman神经网络的电离层TEC预报模型[J]. 大地测量与地球动力学, 2020, 40(4): 395-399 doi: 10.14075/j.jgg.2020.04.014
TANG Jun, GAO Xin. Prediction models of Ionospheric TEC by MEEMD and elman recurrent neural network[J]. Journal of Geodesy and Geodynamics, 2020, 40(4): 395-399 doi: 10.14075/j.jgg.2020.04.014
|
[6] |
倪育德, 闫苗玉, 刘瑞华. 基于DOA-BP神经网络的电离层TEC短期预测[J]. 航空学报, 2024, 45(4): 328707 doi: 10.7527/S1000-6893.2023.28707
NI Yude, YAN Miaoyu, LIU Ruihua. Short-term prediction of ionospheric TEC based on DOA-BP neural network[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 328707 doi: 10.7527/S1000-6893.2023.28707
|
[7] |
汤俊, 钟正宇, 丁明飞, 等. 利用粒子群算法改进Elman神经网络的中国区域电离层TEC预报[J/OL]. 武汉大学学报(信息科学版), 1-15[2024-12-03]. http://kns.cnki.net/kcms/detail/42.1676.TN.20230403.1808.005.html
TANG Jun, ZHONG Zhengyu, DING Mingfei, et al. A prediction model of ionospheric TEC in China based on Elman neural network improved by Particle Swarm Optimization algorithm[J/OL]. Geomatics and Information Science of Wuhan University, 1-15[2024-12-03]. http://kns.cnki.net/kcms/detail/42.1676.TN.20230403.1808.005.html
|
[8] |
YUAN Yuhuan, XIA Guozhen, ZHANG Xinmiao, ZHOU Chen C. (2023). Synthesis-style auto-correlationbased transformer: A learner on ionospheric TEC series forecasting. Space Weather, 21, e2023SW003472. https://doi.org/10.1029/2023SW003472
|
[9] |
袁天娇, 陈艳红, 刘四清, 等. 基于深度学习递归神经网络的电离层总电子含量经验预报模型[J]. 空间科学学报, 2018, 38(1): 48-57 doi: 10.11728/cjss2018.01.048
YUAN Tianjiao, CHEN Yanhong, LIU Siqing, et al. Prediction model for ionospheric total electron content based on deep learning recurrent neural network[J]. Chinese Journal of Space Science, 2018, 38(1): 48-57 doi: 10.11728/cjss2018.01.048
|
[10] |
张富彬, 周晨, 王成, 等. 基于深度学习的全球电离层TEC预测[J]. 电波科学学报, 2021, 36(4): 553-561 doi: 10.13443/j.cjors.2020051101
ZHANG Fubin, ZHOU Chen, WANG Cheng, et al. Global ionospheric TEC prediction based on deep learning[J]. Chinese Journal of Radio Science, 2021, 36(4): 553-561 doi: 10.13443/j.cjors.2020051101
|
[11] |
REN X C, ZHAO B Q, REN Z P, et al. Deep learning‐based prediction of global ionospheric TEC during storm periods: Mixed CNN‐BiLSTM method[J]. Space Weather, 2024, 22(7): e2024SW003877. doi: 10.1029/2024SW003877
|
[12] |
尹萍, 闫晓鹏, 宁泽浩. 一种基于LSTM与IRI模型的电离层层析TEC组合预测方法[J]. 电波科学学报, 2022, 37(5): 852-861 doi: 10.12265/j.cjors.2021271
YIN Ping, YAN Xiaopeng, NING Zehao. A combined forecasting method of ionospheric tomography TEC based on LSTM and IRI model[J]. Chinese Journal of Radio Science, 2022, 37(5): 852-861 doi: 10.12265/j.cjors.2021271
|
[13] |
刘海军, 雷东兴, 袁静, 等. 基于注意力机制LSTM的电离层TEC预测[J]. 地球物理学报, 2024, 67(2): 439-451 doi: 10.6038/cjg2022Q0603
LIU Haijun, LEI Dongxing, YUAN Jing, et al. Ionospheric TEC prediction based on Attention-LSTM[J]. Chinese Journal of Geophysics, 2024, 67(2): 439-451 doi: 10.6038/cjg2022Q0603
|
[14] |
SHIH C Y, LIN C Y T, LIN S Y, et al. Forecasting of global ionosphere maps with multi-day lead time using Transformer-based neural networks[J]. Space Weather, 2024, 22(2): e2023SW003579. doi: 10.1029/2023SW003579
|
[15] |
殷梦婷, 邹自明, 钟佳. 一种电离层TEC格点预测模型[J]. 空间科学学报, 2021, 41(4): 568-579 doi: 10.11728/cjss2021.04.568
YIN Mengting, ZOU Ziming, ZHONG Jia. A prediction model of the grid point ionospheric TEC[J]. Chinese Journal of Space Science, 2021, 41(4): 568-579 doi: 10.11728/cjss2021.04.568
|
[16] |
TANG J, ZHONG Z Y, HU J C, et al. Forecasting regional Ionospheric TEC maps over china using BiConvGRU deep learning[J]. Remote Sensing, 2023, 15(13): 3405. doi: 10.3390/rs15133405
|
[17] |
REN X D, YANG P X, MEI D K, et al. Global ionospheric TEC forecasting for geomagnetic storm time using a deep learning-based multi-model ensemble method[J]. Space Weather, 2023, 21(3): e2022SW003231 doi: 10.1029/2022SW003231
|
[18] |
李涌涛, 李建文, 代桃高, 等. 太阳活动对电离层TEC变化影响分析[J]. 空间科学学报, 2018, 38(6): 847-854 doi: 10.11728/cjss2018.06.847
LI Yongtao, LI Jianwen, DAI Taogao, et al. Influence of solar activity on ionospheric TEC change[J]. Chinese Journal of Space Science, 2018, 38(6): 847-854 doi: 10.11728/cjss2018.06.847
|
[19] |
安玉柱, 张韧, 王伟民, 等. 太阳黑子数与电离层TEC的相关性分析[J]. 解放军理工大学学报(自然科学版), 2012, 13(5): 571-576
AN Yuzhu, ZHANG Ren, WANG Weimin, et al. Correlation analysis between sunspot and TEC[J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2012, 13(5): 571-576
|
[20] |
赵海山, 杨力, 徐世依. 太阳活动高低年电离层TEC变化特性分析[J]. 导航定位学报, 2017, 5(1): 24-30 doi: 10.16547/j.cnki.10-1096.20170106
ZHAO Haishan, YANG Li, XU Shiyi. Analysis of ionospheric TEC variation characteristics in solar activity years[J]. Journal of Navigation and Positioning, 2017, 5(1): 24-30 doi: 10.16547/j.cnki.10-1096.20170106
|
[21] |
LIU Libo, WAN Weixing, CHEN Yiding, et al. Solar activity effects of the ionosphere: A brief review[J]. Chinese Science Bulletin, 2011, 56(12): 1202-1211. (刘立波, 万卫星, 陈一定, 等. 电离层与太阳活动性关系[J]. 科学通报, 2011, 56(7): 477-487. DOI: 10.1007/s11434-010-04226-9
|
[22] |
中国气象局. QX/T 239-2014 地磁活动水平分级[S]. 北京: 中国气象出版社, 2014
China Meteorological Administration. QX/T 239-2014 Levels of geomagnetic activity[S]. Beijing: China Meteorological Press, 2014
|
[23] |
廖文梯, 陈洲, 赵瑜馨, 等. 利用混合模型LSTM-DNN进行全球电离层TEC map的中短期预报[J]. 航天器环境工程, 2021, 38(3): 281-286 doi: 10.12126/see.2021.03.007
LIAO Wenti, CHEN Zhou, ZHAO Yuxin, et al. Short- and medium-term forecasting of global ionospheric TEC map based on hybrid model LSTM-DNN[J]. Spacecraft Environment Engineering, 2021, 38(3): 281-286 doi: 10.12126/see.2021.03.007
|