Citation: | SUN Simin, FENG Jundong, FU Hao, HE Chengyu, TIAN Liuxin, BO Hongyu. Compared Analysis of Retinal Protein Expression Induced by Neutron Radiation and Microgravity (in Chinese). Chinese Journal of Space Science, 2025, 45(5): 1-12 doi: 10.11728/cjss2025.05.2024-0133 |
[1] |
MAO X W, BOERMA M, RODRIGUEZ D, et al. Acute effect of low-dose space radiation on mouse retina and retinal endothelial cells[J]. Radiation Research, 2018, 190(1): 45-52 doi: 10.1667/RR14977.1
|
[2] |
VAN REYK D M, GILLIES M C, DAVIES M J. The retina: oxidative stress and diabetes[J]. Redox Report, 2003, 8(4): 187-192 doi: 10.1179/135100003225002673
|
[3] |
LEE A G, MADER T H, GIBSON C R, et al. Spaceflight associated neuro-ocular syndrome (SANS) and the neuro-ophthalmologic effects of microgravity: a review and an update[J]. NPJ Microgravity, 2020, 6(1): 7 doi: 10.1038/s41526-020-0097-9
|
[4] |
MADER T H, GIBSON C R, PASS A F, et al. Optic disc edema, globe flattening, choroidal folds, and hyperopic shifts observed in astronauts after long-duration space flight[J]. Ophthalmology, 2011, 118(10): 2058-2069 doi: 10.1016/j.ophtha.2011.06.021
|
[5] |
VYAS R J, YOUNG M, MURRAY M C, et al. Decreased vascular patterning in the retinas of astronaut crew members as new measure of ocular damage in spaceflight-associated neuro-ocular syndrome[J]. Investigative Ophthalmology :Times New Roman;">& Visual Science, 2020, 61(14): 34
|
[6] |
MAO X W, BYRUM S, NISHIYAMA N C, et al. Impact of spaceflight and artificial gravity on the mouse retina: biochemical and proteomic analysis[J]. International Journal of Molecular Sciences, 2018, 19(9): 2546 doi: 10.3390/ijms19092546
|
[7] |
FENG J D, ZHAO X D, LUO Y Z, et al. Effects of neutron irradiation on ophthalmic fundus structure, visual function and the mechanisms underlying these effects in rats[J]. Acta Astronautica, 2021, 186: 403-417 doi: 10.1016/j.actaastro.2021.04.032
|
[8] |
MAO X W, NISHIYAMA N C, BYRUM S D, et al. Characterization of mouse ocular response to a 35-day spaceflight mission: Evidence of blood-retinal barrier disruption and ocular adaptations[J]. Scientific Reports, 2019, 9(1): 8215 doi: 10.1038/s41598-019-44696-0
|
[9] |
SHANNON P, MARKIEL A, OZIER O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks[J]. Genome Research, 2003, 13(11): 2498-2504 doi: 10.1101/gr.1239303
|
[10] |
BADER G D, HOGUE C W V. An automated method for finding molecular complexes in large protein interaction networks[J]. BMC Bioinformatics, 2003, 4(1): 2 doi: 10.1186/1471-2105-4-2
|
[11] |
MAERE S, HEYMANS K, KUIPER M. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks[J]. Bioinformatics, 2005, 21(16): 3448-3449 doi: 10.1093/bioinformatics/bti551
|
[12] |
JEONG H, TOMBOR B, ALBERT R, et al. The large-scale organization of metabolic networks[J]. Nature, 2000, 407(6804): 651-654 doi: 10.1038/35036627
|
[13] |
CHIN C H, CHEN S H, WU H H, et al. cytoHubba: identifying hub objects and sub-networks from complex interactome[J]. BMC Systems Biology, 2014, 8(4): S11
|
[14] |
MU Y X, ZHANG N, WEI D Y, et al. Müller cells are activated in response to retinal outer nuclear layer degeneration in rats subjected to simulated weightlessness conditions[J]. Neural Regeneration Research, 2025, 20(7): 2116-2128 doi: 10.4103/NRR.NRR-D-23-01035
|
[15] |
MIYARA N, SHINZATO M, YAMASHIRO Y, et al. Proteomic analysis of rat retina in a steroid-induced ocular hypertension model: potential vulnerability to oxidative stress[J]. Japanese Journal of Ophthalmology, 2008, 52(2): 84-90 doi: 10.1007/s10384-007-0507-5
|
[16] |
ASHBY R S, MEGAW P L, MORGAN I G. Changes in retinal αB-crystallin (cryab) RNA transcript levels during periods of altered ocular growth in chickens[J]. Experimental Eye Research, 2010, 90(2): 238-243 doi: 10.1016/j.exer.2009.10.011
|
[17] |
ZHANG S B, LIU C P, WANG Q, et al. CRYAA and GJA8 promote visual development after whisker tactile deprivation[J]. Heliyon, 2023, 9(3): e13897 doi: 10.1016/j.heliyon.2023.e13897
|
[18] |
XU Q, BAI Y J HUANG L Z, et al. Knockout of αA-crystallin inhibits ocular neovascularization[J]. Investigative Ophthalmology :Times New Roman;">& Visual Science, 2015, 56(2): 816-826
|
[19] |
FORT P E, LAMPI K J. New focus on alpha-crystallins in retinal neurodegenerative diseases[J]. Experimental Eye Research, 2011, 92(2): 98-103 doi: 10.1016/j.exer.2010.11.008
|
[20] |
BOYA P, KAARNIRANTA K, HANDA J T, et al. Lysosomes in retinal health and disease[J]. Trends in Neurosciences, 2023, 46(12): 1067-1082 doi: 10.1016/j.tins.2023.09.006
|
[21] |
VALAPALA M, EDWARDS M, HOSE S, et al. βA3/A1-crystallin is a critical mediator of STAT3 signaling in optic nerve astrocytes[J]. Scientific Reports, 2015, 5(1): 8755 doi: 10.1038/srep08755
|
[22] |
ZIGLER JR J S, SINHA D. βA3/A1-crystallin: more than a lens protein[J]. Progress in Retinal and Eye Research, 2015, 44: 62-85 doi: 10.1016/j.preteyeres.2014.11.002
|
[23] |
BÖHM M R R, PFROMMER S, CHIWITT C, et al. Crystallin-β-b2-overexpressing NPCs support the survival of injured retinal ganglion cells and photoreceptors in rats[J]. Investigative Ophthalmology :Times New Roman;">& Visual Science, 2012, 53(13): 8265-8279
|
[24] |
LIEDTKE T, SCHWAMBORN J C, SCHRÖER U, et al. Elongation of axons during regeneration involves retinal crystallin β b2 (crybb2)[J]. Molecular :Times New Roman;">& Cellular Proteomics, 2007, 6(5): 895-907
|
[25] |
LIU H H, BELL K, HERRMANN A, et al. Crystallins play a crucial role in glaucoma and promote neuronal cell survival in an in vitro model through modulating Müller cell secretion[J]. Investigative Ophthalmology :Times New Roman;">& Visual Science, 2022, 63(8): 3
|
[26] |
HODGES E D, CHRYSTAL P W, FOOTZ T, et al. Disrupting the repeat domain of premelanosome protein (PMEL) produces dysamyloidosis and dystrophic ocular pigment reflective of pigmentary glaucoma[J]. International Journal of Molecular Sciences, 2023, 24(19): 14423 doi: 10.3390/ijms241914423
|
[27] |
ZHU X, BAI Y, YU W, et al. The effects of pleiotrophin in proliferative diabetic retinopathy[J]. PloS One, 2015, 10(1): e0115523 doi: 10.1371/journal.pone.0115523
|
[28] |
LAMPROU M, KASTANA P, KOFINA F, et al. Pleiotrophin selectively binds to vascular endothelial growth factor receptor 2 and inhibits or stimulates cell migration depending on αν β3 integrin expression[J]. Angiogenesis, 2020, 23(4): 621-636 doi: 10.1007/s10456-020-09733-x
|
[29] |
LI R, LIANG Y X, LIN B. Accumulation of systematic TPM1 mediates inflammation and neuronal remodeling by phosphorylating PKA and regulating the FABP5/NF‐κB signaling pathway in the retina of aged mice[J]. Aging Cell, 2022, 21(3): e13566 doi: 10.1111/acel.13566
|
[30] |
RONG L, JING Z, MENG C, et al. TPM1 mediates inflammation by regulating PKA/CREB signaling pathway[J]. Investigative Ophthalmology :Times New Roman;">& Visual Science, 2022, 63(7): 4125-F0362
|
[31] |
IACONO D, HATCH K, MURPHY E K, et al. Proteomic changes in the hippocampus of large mammals after total-body low dose radiation[J]. PloS One, 2024, 19(3): e0296903 doi: 10.1371/journal.pone.0296903
|
[32] |
KLOMP A E, TEOFILO K, LEGACKI E, et al. Analysis of the linkage of MYRIP and MYO7A to melanosomes by RAB27A in retinal pigment epithelial cells[J]. Cell Motility, 2007, 64(6): 474-487 doi: 10.1002/cm.20198
|
[33] |
REICHHART N, MARKOWSKI M, ISHIYAMA S, et al. Rab27a GTPase modulates L-type Ca2+ channel function via interaction with the II–III linker of CaV1.3 subunit[J]. Cellular Signalling, 2015, 27(11): 2231-2240 doi: 10.1016/j.cellsig.2015.07.023
|
[34] |
OUCHI T, KONO K, SATOU R, et al. Upregulation of Amy1 in the salivary glands of mice exposed to a lunar gravity environment using the multiple artificial gravity research system[J]. Frontiers in Physiology, 2024, 15: 1417719 doi: 10.3389/fphys.2024.1417719
|
[35] |
RETZBACH E P, SHEEHAN S A, KRISHNAN H, et al. Independent effects of Src kinase and podoplanin on anchorage independent cell growth and migration[J]. Molecular Carcinogenesis, 2022, 61(7): 677-689 doi: 10.1002/mc.23410
|
[36] |
RUSU M C, NICOLESCU M I, VRAPCIU A D. Evidence of lymphatics in the rat eye retina[J]. Annals of Anatomy-Anatomischer Anzeiger, 2022, 244: 151987 doi: 10.1016/j.aanat.2022.151987
|
[37] |
ESHAQ R, WARAR R, HARRIS N. Upregulation of Prox‐1, podoplanin and LYVE‐1 in retinal endothelial cells under hyperglycemic conditions[J]. The FASEB Journal, 2020, 34(S1): 1
|
[38] |
BONENTE D, BIANCHI L, DE SALVO R, et al. Co-Expression of podoplanin and CD44 in proliferative vitreoretinopathy epiretinal membranes[J]. International Journal of Molecular Sciences, 2023, 24(11): 9728 doi: 10.3390/ijms24119728
|
[39] |
BADHWAR G D, KEITH J E, CLEGHORN T F. Neutron measurements onboard the space shuttle[J]. Radiation Measurements, 2001, 33(3): 235-241 doi: 10.1016/S1350-4487(00)00159-1
|
[40] |
ZEITLIN C, CASTRO A J, BEARD K B, et al. Results from the radiation assessment detector on the international space station: Part 1, the charged particle detector[J]. Life Sciences in Space Research, 2023, 39: 67-75 doi: 10.1016/j.lssr.2023.01.003
|
[41] |
PROSS H D, KOST M, KIEFER J. Repair of radiation induced genetic damage under microgravity[J]. Advances in Space Research, 1994, 14(10): 125-130 doi: 10.1016/0273-1177(94)90461-8
|
[42] |
HORNECK G, RETTBERG P, KOZUBEK S, et al. The influence of microgravity on repair of radiation-induced DNA damage in bacteria and human fibroblasts[J]. Radiation Research, 1997, 147(3): 376-384 doi: 10.2307/3579347
|
[43] |
STRIKE T A. Acute mortality of mice and rats exposed to 14 MeV neutrons[J]. Radiation Research, 1970, 43(3): 679-690 doi: 10.2307/3573237
|
[44] |
NILSSON S, HELOU K, WALENTINSSON A, et al. Rat–mouse and rat–human comparative maps based on gene homology and high-resolution zoo-FISH[J]. Genomics, 2001, 74(3): 287-298 doi: 10.1006/geno.2001.6550
|