| Citation: | YUE Jiaxu, ZHAO Hui, YANG Chang, ZHANG Sai. Rapid Evolution of the Relativistic Electron Pitch Angle Distributions Caused by Chorus in the Earth’s Outer Radiation Belt (in Chinese). Chinese Journal of Space Science, 2025, 45(5): 1188-1196 doi: 10.11728/cjss2025.05.2024-0187 |
| [1] |
LI L Y, YANG S S, CAO J B, et al. Effects of solar wind plasma flow and interplanetary magnetic field on the spatial structure of earth's radiation belts[J]. Journal of Geophysical Research: Space Physics, 2019, 124(12): 10332-10344 doi: 10.1029/2019JA027284
|
| [2] |
LI L Y, CAO J B, ZHOU G C, et al. Statistical roles of storms and substorms in changing the entire outer zone relativistic electron population[J]. Journal of Geophysical Research: Space Physics, 2009, 114(A12): A12214
|
| [3] |
YU J, LI L Y, CAO J B, et al. Multiple loss processes of relativistic electrons outside the heart of outer radiation belt during a storm sudden commencement[J]. Journal of Geophysical Research: Space Physics, 2015, 120(12): 10275-10288
|
| [4] |
SU Z P, GAO Z L, ZHU H, et al. Nonstorm time dropout of radiation belt electron fluxes on 24 September 2013[J]. Journal of Geophysical Research: Space Physics, 2016, 121(7): 6400-6416 doi: 10.1002/2016JA022546
|
| [5] |
SU Z P, ZHU H, XIAO F L, et al. Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons[J]. Nature Communications, 2015, 6(1): 10096 doi: 10.1038/ncomms10096
|
| [6] |
OZEKE L G, MANN I R, OLIFER L, et al. Statistical characteristics of energetic electron pitch angle distributions in the Van Allen Probe era: 1. Butterfly distributions with flux peaks at preferred pitch angles[J]. Journal of Geophysical Research: Space Physics, 2022, 127(3): e2021JA029907 doi: 10.1029/2021JA029907
|
| [7] |
LUO Qiong, NI Binbin, CAO Xing, et al. An optimized identification method for radiation belt electron butterfly pitch angle distributions based on the chi-square distribution function[J]. Chinese Journal of Geophysics, 2022, 65(3): 809-818 (罗琼, 倪彬彬, 曹兴, 等. 基于卡方分布函数的辐射带电子蝴蝶状投掷角分布的优化判别方法[J]. 地球物理学报, 2022, 65(3): 809-818
LUO Qiong, NI Binbin, CAO Xing, et al. An optimized identification method for radiation belt electron butterfly pitch angle distributions based on the chi-square distribution function[J]. Chinese Journal of Geophysics, 2022, 65(3): 809-818
|
| [8] |
YU J, LI L Y, CAO J B, et al. The influences of solar wind pressure and interplanetary magnetic field on global magnetic field and outer radiation belt electrons[J]. Geophysical Research Letters, 2016, 43(14): 7319-7327 doi: 10.1002/2016GL069029
|
| [9] |
SIBECK D G, MCENTIRE R W, LUI A T Y, et al. Magnetic field drift shell splitting: cause of unusual dayside particle pitch angle distributions during storms and substorms[J]. Journal of Geophysical Research: Space Physics, 1987, 92(A12): 13485-13497 doi: 10.1029/JA092iA12p13485
|
| [10] |
LI L Y, YU J, CAO J B, et al. Effects of ULF waves on local and global energetic particles: particle energy and species dependences[J]. Journal of Geophysical Research: Space Physics, 2016, 121(11): 11007-11020
|
| [11] |
BRAUTIGAM D H, ALBERT J M. Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm[J]. Journal of Geophysical Research: Space Physics, 2000, 105(A1): 291-309 doi: 10.1029/1999JA900344
|
| [12] |
YUAN H C, LI L Y, YANG L, et al. Competing influences of earthward convection and azimuthal drift loss on the pitch angle distribution of energetic electrons[J]. Journal of Geophysical Research: Space Physics, 2024, 129(7): e2024JA032534 doi: 10.1029/2024JA032534
|
| [13] |
XIAO F L, YANG C, SU Z P, et al. Wave-driven butterfly distribution of Van Allen belt relativistic electrons[J]. Nature Communications, 2015, 6(1): 8590 doi: 10.1038/ncomms9590
|
| [14] |
LI L Y, YU J, CAO J B, et al. Roles of whistler mode waves and magnetosonic waves in changing the outer radiation belt and the slot region[J]. Journal of Geophysical Research: Space Physics, 2017, 122(5): 5431-5448 doi: 10.1002/2016JA023634
|
| [15] |
LI L Y, YU J, CAO J B, et al. Competitive influences of different plasma waves on the pitch angle distribution of energetic electrons inside and outside plasmasphere[J]. Geophysical Research Letters, 2022, 49(1): e2021GL096062 doi: 10.1029/2021GL096062
|
| [16] |
YANG Lixian, LIU Si, GAO Zhonglei, et al. Statistical study on propagation characteristics of chorus in the earth’s magnetosphere[J]. Chinese Journal of Space Science, 2024, 44(6): 998-1005 (杨立贤, 刘斯, 高中磊, 等. 地球磁层中合声波的频率与传播角分布特征[J]. 空间科学学报, 2024, 44(6): 998-1005 doi: 10.11728/cjss2024.06.2024-yg27
YANG Lixian, LIU Si, GAO Zhonglei, et al. Statistical study on propagation characteristics of chorus in the earth’s magnetosphere[J]. Chinese Journal of Space Science, 2024, 44(6): 998-1005 doi: 10.11728/cjss2024.06.2024-yg27
|
| [17] |
XIAO F L, LIU S, TAO X, et al. Generation of extremely low frequency chorus in Van Allen radiation belts[J]. Journal of Geophysical Research: Space Physics, 2017, 122(3): 3201-3211 doi: 10.1002/2016JA023561
|
| [18] |
SANTOLÍK O, GURNETT D A, PICKETT J S, et al. Spatio‐temporal structure of storm‐time chorus[J]. Journal of Geophysical Research: Space Physics, 2003, 108(A7): 1278
|
| [19] |
LI W, THORNE R M, ANGELOPOULOS V, et al. Global distribution of whistler‐mode chorus waves observed on the THEMIS spacecraft[J]. Geophysical Research Letters, 2009, 36(9): L09104
|
| [20] |
SU Z P, ZHU H, XIAO F L, et al. Quantifying the relative contributions of substorm injections and chorus waves to the rapid outward extension of electron radiation belt[J]. Journal of Geophysical Research: Space Physics, 2014, 119(12): 10023-10040
|
| [21] |
SU Z P, ZHU H, XIAO F L, et al. Intense duskside lower band chorus waves observed by Van Allen Probes: generation and potential acceleration effect on radiation belt electrons[J]. Journal of Geophysical Research: Space Physics, 2014, 119(6): 4266-4273 doi: 10.1002/2014JA019919
|
| [22] |
HU Xiong, ZHANG Xunxie. Interaction between whistler mode wave and the electrons in the magnetosphere[J]. Chinese Journal of Space Science, 1992, 12(4): 279-286 (胡雄, 张训械. 磁层中哨声波与电子的相互作用[J]. 空间科学学报, 1992, 12(4): 279-286 doi: 10.11728/cjss1992.04.279
HU Xiong, ZHANG Xunxie. Interaction between whistler mode wave and the electrons in the magnetosphere[J]. Chinese Journal of Space Science, 1992, 12(4): 279-286 doi: 10.11728/cjss1992.04.279
|
| [23] |
HE Tian, LIU Siqing, ZHENG Jinlei, et al. Study on high energy electron flux enhancement events and whistler chorus wave[J]. Chinese Journal of Space Science, 2013, 33(2): 170-175 (何甜, 刘四清, 郑金磊, 等. 哨声模合声波与地球同步轨道高能电子通量增强事件事例研究[J]. 空间科学学报, 2013, 33(2): 170-175 doi: 10.11728/cjss2013.02.170
HE Tian, LIU Siqing, ZHENG Jinlei, et al. Study on high energy electron flux enhancement events and whistler chorus wave[J]. Chinese Journal of Space Science, 2013, 33(2): 170-175 doi: 10.11728/cjss2013.02.170
|
| [24] |
XIAO F L, SU Z P, ZHENG H N, et al. Three‐dimensional simulations of outer radiation belt electron dynamics including cross‐diffusion terms[J]. Journal of Geophysical Research: Space Physics, 2010, 115(A5): A05216
|
| [25] |
HE J B, JIN Y Y, XIAO F L, et al. The influence of various frequency chorus waves on electron dynamics in radiation belts[J]. Science China Technological Sciences, 2021, 64(4): 890-897 doi: 10.1007/s11431-020-1750-6
|
| [26] |
YANG C, SU Z P, XIAO F L, et al. Rapid flattening of butterfly pitch angle distributions of radiation belt electrons by whistler‐mode chorus[J]. Geophysical Research Letters, 2016, 43(16): 8339-8347 doi: 10.1002/2016GL070194
|
| [27] |
YANG C, XIAO F L, HE Y H, et al. Storm time evolution of outer radiation belt relativistic electrons by a nearly continuous distribution of chorus[J]. Geophysical Research Letters, 2018, 45(5): 2159-2167 doi: 10.1002/2017GL075894
|
| [28] |
JIN Y Y, YANG C, HE Y H, et al. Butterfly distribution of Earth’s radiation belt relativistic electrons induced by dayside chorus[J]. Science China Technological Sciences, 2018, 61(2): 212-218 doi: 10.1007/s11431-017-9067-y
|
| [29] |
KLETZING C A, BORTNIK J, HOSPODARSKY G, et al. The Electric and Magnetic Fields Instrument Suite and Integrated Science (EMFISIS): science, data, and usage best practices[J]. Space Science Reviews, 2023, 219(4): 28 doi: 10.1007/s11214-023-00973-z
|
| [30] |
BLAKE J B, CARRANZA P A, CLAUDEPIERRE S G, et al. The Magnetic Electron Ion Spectrometer (MagEIS) instruments aboard the Radiation Belt Storm Probes (RBSP) spacecraft[J]. Space Science Reviews 2013, 179(1): 383-421
|
| [31] |
BAKER D N, KANEKAL S G, HOXIE V, et al. The Relativistic Electron-Proton Telescope (REPT) investigation: design, operational properties, and science highlights[J]. Space Science Reviews, 2021, 217(5): 68 doi: 10.1007/s11214-021-00838-3
|
| [32] |
MAUK B H, FOX N J, KANEKAL S G, et al. Science objectives and rationale for the radiation belt storm probes mission[J]. Space Science Reviews, 2013, 179(1): 3-27
|
| [33] |
XIAO F L, SU Z P, ZHENG H N, et al. Modeling of outer radiation belt electrons by multidimensional diffusion process[J]. Journal of Geophysical Research: Space Physics, 2009, 114(A3): A03201
|
| [34] |
SUMMERS D. Quasi‐linear diffusion coefficients for field‐aligned electromagnetic waves with applications to the magnetosphere[J]. Journal of Geophysical Research: Space Physics, 2005, 110(A8): A08213
|
| [35] |
KURTH W S, DE PASCUALE S, FADEN J B, et al. Electron densities inferred from plasma wave spectra obtained by the waves instrument on Van Allen Probes[J]. Journal of Geophysical Research: Space Physics, 2015, 120(2): 904-914 doi: 10.1002/2014JA020857
|