Turn off MathJax
Article Contents
ZHAO Hongyu, ZHOU Shuhua, KUANG Yingcai, WANG Ning. Global Ionospheric Response to the Geomagnetic Storms from March to April 2023 (in Chinese). Chinese Journal of Space Science, 2025, 45(5): 1-10 doi: 10.11728/cjss2025.05.2024-0198
Citation: ZHAO Hongyu, ZHOU Shuhua, KUANG Yingcai, WANG Ning. Global Ionospheric Response to the Geomagnetic Storms from March to April 2023 (in Chinese). Chinese Journal of Space Science, 2025, 45(5): 1-10 doi: 10.11728/cjss2025.05.2024-0198

Global Ionospheric Response to the Geomagnetic Storms from March to April 2023

doi: 10.11728/cjss2025.05.2024-0198 cstr: 32142.14.cjss.2024-0198
  • Received Date: 2024-12-26
  • Rev Recd Date: 2025-05-13
  • Available Online: 2025-05-15
  • By using the global ionospheric data provided by IGS, the sliding quartile range method is employed to study the ionospheric disturbances during the two geomagnetic storms occurred from March to April 2023, striving to provide theoretical basis for the distribution characteristics of ionospheric disturbances caused by geomagnetic storms under strong solar radiation background during the peak year of solar activity. Results show that both geomagnetic storms were caused by the CMEs generated on the surface of the Sun facing towards the Earth, which reached the Earth and triggered an increase in the velocity of the interstellar solar wind. The CMEs carried a southward magnetic field component and high-energy particles, causing magnetic reconnection with the Earth’s magnetic field and triggering geomagnetic disturbances. When other factors such as dark stripe bursts are superimposed on the coronal mass ejections, the intensity of geomagnetic storms are enhanced, causing significant differences in the occurrence and distribution characteristics of ionospheric TEC disturbances. The geomagnetic storm that occurred on 23-24 April 2023 was affected by the superposition of dark bars and CMEs, resulting in a stronger intensity and longer duration of the April geomagnetic storm. At the same time, there are significant differences in the occurrence process and distribution characteristics of ionospheric disturbances caused by two geomagnetic storms. The ionospheric disturbances during the March showed an asymmetric distribution in an east-west direction, while the entire process of ionospheric disturbance during the geomagnetic period in April exhibits a transition from positive phase disturbance to negative phase disturbance. Additionally, in the East Asia-Australia (120°E), the ionospheric TEC in the Northern Hemisphere line is significantly higher than that in the Southern Hemisphere. The amplitude changes of ionospheric disturbances are most significant during the recovery phase of geomagnetic storms, showing a distribution pattern of positive disturbances at low latitudes and negative disturbances at middle-high latitudes.

     

  • loading
  • [1]
    李征航, 黄劲松. GPS测量与数据处理[M]. 4版. 武汉: 武汉大学出版社, 2024

    LI Zhenghang, HUANG Jinsong. GPS Surveying and Data Processing[M]. Wuhan: Wuhan University, 2013
    [2]
    NITTA N V, MULLIGAN T, KILPUA E K J, et al. Correction to: understanding the origins of problem geomagnetic storms associated with "Stealth" coronal mass ejections[J]. Space Science Reviews, 2021, 217(8): 84 doi: 10.1007/s11214-021-00860-5
    [3]
    邱娜, 陈艳红, 王文斌, 等. 中低纬地区电离层对CIR和CME响应的统计分析[J]. 地球物理学报, 2015, 58(7): 2250-2262 doi: 10.6038/cjg20150704

    QIU Na, CHEN Yanhong, WANG Wenbin, et al. Statistical analysis of the ionosphere response to the CIR and CME in Mid-latitude regions[J]. Chinese Journal of Geophysics, 2015, 58(7): 2250-2262 doi: 10.6038/cjg20150704
    [4]
    徐小恒. 空间天气对航班延误和飞行时间的影响研究[D]. 哈尔滨: 哈尔滨工业大学, 2023

    XU Xiaoheng. The Effects of Space Weather on Flight Delays and Flight Times[D]. Harbin: Harbin Institute of Technology, 2023
    [5]
    MANDEA M, CHAMBODUT A. Geomagnetic field processes and their implications for space weather[J]. Surveys in Geophysics, 2020, 41(6): 1611-1627 doi: 10.1007/s10712-020-09598-1
    [6]
    CONTREIRA D B, RODRIGUES F S, MAKITA K, et al. An experiment to study solar flare effects on radio-communication signals[J]. Advances in Space Weather, 2005, 36(12): 2455-2459
    [7]
    丁宗华, 陈春. 电离层色散效应对线极化雷达信号的影响分析[J]. 电波科学学报, 2011, 26(1): 30-34

    DING Zonghua, CHEN Chun. Preliminary analysis of the ionospheric dispersion effect on linear polarization radar signal[J]. Chinese Journal of Radio Science, 2011, 26(1): 30-34
    [8]
    聂文锋, 胡伍生, 潘树国, 等. 利用GPS双频数据进行区域电离层TEC提取[J]. 武汉大学学报•信息科学版, 2014, 39(9): 1022-1027

    NIE Wenfeng, HU Wusheng, PAN Shuguo, et al. Extraction of regional ionospheric TEC from GPS dual observation[J]. Geomatics and Information Science of Wuhan University, 2014, 39(9): 1022-1027
    [9]
    全林, 薛军琛, 胡小工, 等. 中国区域GPS单频点定位在不同类型磁暴主相期间定位性能分析[J]. 地球物理学报, 2021, 64(9): 3030-3047 doi: 10.6038/cjg2021P0331

    QUAN Lin, XUE Junchen, HU Xiaogong, et al. Performance of GPS single frequency standard point positioning in China during the main phase of different classified geomagnetic storms[J]. Chinese Journal of Geophysics, 2021, 64(9): 3030-3047 doi: 10.6038/cjg2021P0331
    [10]
    黄为权, 万卫星, 薛炳森. 2017年5月磁暴过程及近地空间环境响应分析[J]. 中国科学: 技术科学, 2019, 49(9): 1051-1063 doi: 10.1360/N092018-00104

    HUANG Weiquan, WAN Weixing, XUE Bingsen. Analyses of geospace response to the geomagnetic storm in May 2017[J]. Scientia Sinica Technologica, 2019, 49(9): 1051-1063 doi: 10.1360/N092018-00104
    [11]
    MANSILLA G A. Behavior of the total electron content over the arctic and antarctic sectors during several intense geomagnetic storms[J]. Geodesy and Geodynamics, 2019, 10(1): 26-36 doi: 10.1016/j.geog.2019.01.004
    [12]
    邓忠新, 刘瑞源, 甄卫民, 等. 中国地区电离层TEC暴扰动研究[J]. 地球物理学报, 2012, 55(7): 2177-2184 doi: 10.6038/j.issn.0001-5733.2012.07.004

    DENG Zhongxin, LIU Ruiyuan, ZHEN Weimin, et al. Study on the ionospheric TEC storms over China[J]. Chinese Journal of Geophysics, 2012, 55(7): 2177-2184 doi: 10.6038/j.issn.0001-5733.2012.07.004
    [13]
    汤俊, 高鑫, 李垠健, 等. 2018年8月磁暴期间北斗GEO卫星电离层TEC时空变化分析[J]. 测绘学报, 2022, 51(3): 317-326 doi: 10.11947/j.AGCS.2022.20210013

    TANG Jun, GAO Xin, LI Yinjian, et al. Spatial-temporal variations of the ionospheric TEC during the August 2018 geomagnetic storm by Beidou GEO Satellites[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(3): 317-326 doi: 10.11947/j.AGCS.2022.20210013
    [14]
    王格, 王宁波, 李子申, 等. 地磁暴期间北半球高纬度地区电离层变化特征及对精密定位的影响[J]. 空间科学学报, 2021, 41(2): 261-272 doi: 10.11728/cjss2021.02.261

    WANG Ge, WANG Ningbo, LI Zishen, et al. Impact of geomagnetic storms on ionosphere variability and precise point positioning application in high latitudes of the northern hemisphere[J]. Chinese Journal of Space Science, 2021, 41(2): 261-272 doi: 10.11728/cjss2021.02.261
    [15]
    袁建刚, 李旺, 刘胜男. 全球电离层对2015年3月17日强地磁暴的响应分析[J]. 测绘科学技术学报, 2019, 36(6): 558-564

    YUAN Jiangang, LI Wang, LIU Shengnan. Global ionospheric responses to the strong geomagnetic storm on March 17, 2015[J]. Journal of Geomatics Science and Technology, 2019, 36(6): 558-564
    [16]
    明飞雄, 马锦山. 磁暴期间北斗GEO卫星电离层异常研究[J]. 地理空间信息, 2023, 21(8): 100-103 doi: 10.3969/j.issn.1672-4623.2023.08.026

    MING Feixiong, MA Jinshan. Study on ionospheric anomaly during geomagnetic storm by Beidou GEO Satellites[J]. Geospatial Information, 2023, 21(8): 100-103 doi: 10.3969/j.issn.1672-4623.2023.08.026
    [17]
    李维新, 陈艳红, 袁天娇. 中低纬电离层不同季节地磁暴响应的事例分析[J]. 空间科学学报, 2021, 41(5): 746-759 doi: 10.11728/cjss2021.05.746

    LI Weixin, CHEN Yanhong, YUAN Tianjiao. Ionosphere responses to geomagnetic storms at middle to low latitude region in different seasons[J]. Chinese Journal of Space Science, 2021, 41(5): 746-759 doi: 10.11728/cjss2021.05.746
    [18]
    欧明, 吴家燕, 陈龙江, 等. 一次中等磁暴期间全球电离层TEC及ROTI指数变化分析[J]. 空间科学学报, 2021, 41(6): 887-897 doi: 10.11728/cjss2021.06.887

    OU Ming, WU Jiayan, CHEN Longjiang, et al. Global ionospheric TEC and ROTI variations during a moderate geomagnetic storm[J]. Chinese Journal of Space Science, 2021, 41(6): 887-897 doi: 10.11728/cjss2021.06.887
    [19]
    LE Huijun, LIU Libo, CHEN Yiding, et al. Anomaly distribution of ionospheric total electron content responses to some solar flares[J]. Earth and Planetary Physics, 2019, 3(6): 481-488
    [20]
    李涌涛, 李建文, 代桃高, 等. 太阳活动对电离层TEC变化影响分析[J]. 空间科学学报, 2018, 38(6): 847-854 doi: 10.11728/cjss2018.06.847

    LI Yongtao, LI Jianwen, DAI Taogao, et al. Influence of solar activity on ionospheric TEC change[J]. Chinese Journal of Space Science, 2018, 38(6): 847-854 doi: 10.11728/cjss2018.06.847
    [21]
    赵永宁, 叶林, 朱倩雯. 风电场弃风异常数据簇的特征及处理方法[J]. 电力系统自动化, 2014, 38(21): 39-46 doi: 10.7500/AEPS20131213010

    ZHAO Yongning, YE Lin, ZHU Qianwen. Characteristics and processing method of abnormal data clusters caused by wind curtailments in wind farms[J]. Automation of Electric Power Systems, 2014, 38(21): 39-46 doi: 10.7500/AEPS20131213010
    [22]
    朱军桃, 赵苗兴, 龚朝飞, 等. 2017年九寨沟Ms7.0级地震震前电离层异常[J]. 桂林理工大学学报, 2020, 40(2): 372-378 doi: 10.3969/j.issn.1674-9057.2020.02.016

    ZHU Juntao, ZHAO Miaoxing, GONG Chaofei, et al. Ionosphere abnormalities before the 2017 Ms7.0 Jiuzhai Valley earthquake[J]. Journal of Guilin University of Technology, 2020, 40(2): 372-378 doi: 10.3969/j.issn.1674-9057.2020.02.016
    [23]
    杨可可, 刘立友, 陈军. 基于滑动四分位距法的地震期间电离层TEC异常[J]. 桂林理工大学学报, 2019, 39(2): 427-432 doi: 10.3969/j.issn.1674-9057.2019.02.023

    YANG Keke, LIU Liyou, CHEN Jun. Abnormality of ionospheric TEC during earthquake based on sliding interquartile rang method[J]. Journal of Guilin University of Technology, 2019, 39(2): 427-432 doi: 10.3969/j.issn.1674-9057.2019.02.023
    [24]
    孙佳龙, 龙冰心, 秦思远, 等. 台风“鲶鱼”期间电离层TEC变化异常分析[J]. 地球物理学进展, 2019, 34(3): 936-943 doi: 10.6038/pg2019CC0111

    SUN Jialong, LONG Bingxin, QIN Siyuan, et al. Analysis of abnormal changes of ionospheric TEC during typhoon Megi[J]. Progress in Geophysics, 2019, 34(3): 936-943 doi: 10.6038/pg2019CC0111
    [25]
    朱军桃, 刘玉升, 林知宇, 等. 2018-08-25~29期间全球电离层TEC对地磁暴的响应分析[J]. 大地测量与地球动力学, 2022, 42(7): 661-688, 674

    ZHU Juntao, LIU Yusheng, LIN Zhiyu, et al. Response analysis of global ionospheric TEC to geomagnetic storms from august 25~29, 2018[J]. Journal of Geodesy and Geodynamics, 2022, 42(7): 661-668, 674
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article Views(160) PDF Downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return