Turn off MathJax
Article Contents
GUAN feng, GE Ping, LIU Shuangliang, MA Ke, JIANG Yichen, LI Xiang, XU Yanli, SHAO Yanli, KANG Yan, LIU Jizhong. Concept and Framework Development of the Digital-intelligent Solar System (in Chinese). Chinese Journal of Space Science, 2025, 45(5): 1-14 doi: 10.11728/cjss2025.05.2025-yg06
Citation: GUAN feng, GE Ping, LIU Shuangliang, MA Ke, JIANG Yichen, LI Xiang, XU Yanli, SHAO Yanli, KANG Yan, LIU Jizhong. Concept and Framework Development of the Digital-intelligent Solar System (in Chinese). Chinese Journal of Space Science, 2025, 45(5): 1-14 doi: 10.11728/cjss2025.05.2025-yg06

Concept and Framework Development of the Digital-intelligent Solar System

doi: 10.11728/cjss2025.05.2025-yg06 cstr: 32142.14.cjss.2025-yg06
  • Received Date: 2025-07-20
  • Rev Recd Date: 2025-09-06
  • Available Online: 2025-09-08
  • Human exploration of the solar system is entering a new phase characterized by deeper interdisciplinary integration, increased mission complexity, and broader international engagement. Emerging technologies such as big data, artificial intelligence, and high-performance computing are reshaping the landscape of deep space exploration. The innovative concept and architecture of a Digital-intelligent Solar System is proposed in this study. This vision integrates a cross-disciplinary knowledge as the core of this concept, leverages digital twin facilities as its infrastructure, and relies intelligent algorithms and tools to enable a collaborative digital ecosystem. A comprehensive development plan centered on four key pillars is outlined: cross-disciplinary knowledge system, full-scope data engineering, adaptive intelligence and computation, and innovation platform driven by collective intelligence. Potential application scenarios are designed in scientific research, engineering implementation, science communication, and international cooperation. This architecture offers a new pathway, model, and support system for advancing China’s deep space exploration capabilities and promoting transformative changes in both scientific inquiry and engineering practices.

     

  • loading
  • [1]
    叶培建, 邹乐洋, 王大轶, 等. 中国深空探测领域发展及展望[J]. 国际太空, 2018(10): 4-10

    YE Peijian, ZOU Leyang, WANG Dayi, et al. Development and prospect of Chinese deep space exploration[J]. Space International, 2018(10): 4-10
    [2]
    吴伟仁, 王赤, 刘洋, 等. 深空探测之前沿科学问题探析[J]. 科学通报, 2023, 68(6): 606-627 doi: 10.1360/TB-2022-0667

    WU Weiren, WANG Chi, LIU Yang, et al. Frontier scientific questions in deep space exploration[J]. Chinese Science Bulletin, 2023, 68(6): 606-627 doi: 10.1360/TB-2022-0667
    [3]
    张荣桥, 黄江川, 赫荣伟, 等. 小行星探测发展综述[J]. 深空探测学报, 2019, 6(5): 417-423,455

    ZHANG Rongqiao, HUANG Jiangchuan, HE Rongwei, et al. The development overview of asteroid exploration[J]. Journal of Deep Space Exploration, 2019, 6(5): 417-423,455
    [4]
    吴伟仁, 于登云. 深空探测发展与未来关键技术[J]. 深空探测学报, 2014, 1(1): 5-17

    WU Weiren, YU Dengyun. Development of deep space exploration and its future key technologies[J]. Journal of Deep Space Exploration, 2014, 1(1): 5-17
    [5]
    李春来, 刘建军, 任鑫, 等. 基于嫦娥二号立体影像的全月高精度地形重建[J]. 武汉大学学报·信息科学版, 2018, 43(4): 485-495

    LI Chunlai, LIU Jianjun, REN Xin, et al. Lunar global high-precision terrain reconstruction based on Chang'E-2 stereo images[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4): 485-495
    [6]
    吴伟仁, 王琼, 唐玉华, 等. “嫦娥4号”月球背面软着陆任务设计[J]. 深空探测学报, 2017, 4(2): 111-117

    WU Weiren, WANG Qiong, TANG Yuhua, et al. Design of Chang'E-4 lunar farside soft-landing mission[J]. Journal of Deep Space Exploration, 2017, 4(2): 111-117
    [7]
    ZHANG Q W L, YANG M H, LI Q L, et al. Lunar farside volcanism 2.8 billion years ago from Chang’e-6 basalts[J]. Nature, 2025, 643(8071): 356-360 doi: 10.1038/s41586-024-08382-0
    [8]
    LI Q L, ZHOU Q, LIU Y, et al. Two-billion-year-old volcanism on the Moon from Chang’e-5 basalts[J]. Nature, 2021, 600(7887): 54-58 doi: 10.1038/s41586-021-04100-2
    [9]
    葛平, 姜亦宸, 孙宇, 等. 2024年深空探测进展与展望[J]. 中国航天, 2025(1): 28-38

    GE Ping, JIANG Yichen, SUN Yu, et al. Progress and prospects of deep space exploration in 2024[J]. Aerospace China, 2025(1): 28-38
    [10]
    LI C, ZHENG Y K, WANG X, et al. Layered subsurface in Utopia Basin of Mars revealed by Zhurong rover radar[J]. Nature, 2022, 610(7931): 308-312 doi: 10.1038/s41586-022-05147-5
    [11]
    李春来, 刘建军, 任鑫, 等. “天问二号”任务科学目标和有效载荷配置[J]. 深空探测学报(中英文), 2024, 11(3): 304-310

    LI Chunlai, LIU Jianjun, REN Xin, et al. Scientific objectives and payloads configuration of the Tianwen-2 mission[J]. Journal of Deep Space Exploration, 2024, 11(3): 304-310
    [12]
    刘继忠, 胡朝斌, 庞涪川, 等. 深空探测发展战略研究[J]. 中国科学: 技术科学, 2020, 50(9): 1126-1139 doi: 10.1360/SST-2020-0207

    LIU Jizhong, HU Chaobin, PANG Fuchuan, et al. Strategy of deep space exploration[J]. SCIENTIA SINICA Technologica, 2020, 50(9): 1126-1139 doi: 10.1360/SST-2020-0207
    [13]
    童小华, 刘世杰, 谢欢, 等. 从地球测绘到地外天体测绘[J]. 测绘学报, 2022, 51(4): 488-500

    TONG Xiaohua, LIU Shijie, XIE Huan, et al. From Earth mapping to extraterrestrial planet mapping[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(4): 488-500
    [14]
    高文. 抢抓人工智能发展的历史性机遇——深刻领会习近平总书记关于人工智能的重要论述[J]. 中国信息化, 2025(2): 6-9

    GAO Wen. Seizing the Historic Opportunity for the Development of Artificial Intelligence: Deeply Comprehend General Secretary Xi Jinping’s Important Expositions on Artificial Intelligence[J]. China Information Technology, 2025(2): 6-9
    [15]
    PERES R S, JIA X D, LEE J, et al. Industrial artificial intelligence in industry 4.0-systematic review, challenges and outlook[J]. IEEE Access, 2020, 8: 220121-220139 doi: 10.1109/ACCESS.2020.3042874
    [16]
    MANDAL V, MUSSAH A R, JIN P, et al. Artificial intelligence-enabled traffic monitoring system[J]. Sustainability, 2020, 12(21): 9177 doi: 10.3390/su12219177
    [17]
    HAMET P, TREMBLAY J. Artificial intelligence in medicine[J]. Metabolism, 2017, 69: S36-S40 doi: 10.1016/j.metabol.2017.01.011
    [18]
    孙璞, 袁维佳, 孙凤丽, 等. 航天产业数字化转型发展战略研究[J]. 中国工程科学, 2025, 27(2): 216-229 doi: 10.15302/J-SSCAE-2025.01.022

    SUN Pu, YUAN Weijia, SUN Fengli, et al. Digital transformation strategy of aerospace industry[J]. Strategic Study of CAE, 2025, 27(2): 216-229 doi: 10.15302/J-SSCAE-2025.01.022
    [19]
    李国杰. 智能化科研(AI4R): 第五科研范式[J]. 中国科学院院刊, 2024, 39(1): 1-9

    LI Guojie. AI4R: the fifth scientific research paradigm[J]. Bulletin of Chinese Academy of Sciences, 2024, 39(1): 1-9
    [20]
    National Aeronautics and Space Administration. Planetary data system roadmap study for 2017-2026[R]. Greenbelt: National Aeronautics and Space Administration, 2017
    [21]
    BHATTACHARJEE B, TRIVEDI A, MURAOKA M, et al. INDUS: effective and efficient language models for scientific applications[C]//Proceedings of 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track. Miami: Association for Computational Linguistics, 2024: 98-112
    [22]
    RAGA F, DOCASAL R, OSINDE J, et al. ESA’s PSA: new interface, exploring planetary data[C]//Proceedings of the 55th Lunar and Planetary Science Conference. Woodland: LPSC, 2024: 1496
    [23]
    PAZ M. A submillisecond Fourier and wavelet-based model to extract variable candidates from the NEOWISE single-exposure database[J]. The Astronomical Journal, 2024, 168(6): 241 doi: 10.3847/1538-3881/ad7fe6
    [24]
    HUGHES S P. General mission analysis tool (GMAT)[R]. National Aeronautics and Space Administration, 2016
    [25]
    MALDAGUE P F, WISSLER S S, LENDA M D, et al. APGEN scheduling: 15 years of experience in planning automation[C]//Proceedings of the SpaceOps 2014 Conference. Pasadena: AIAA, 2014: 1809
    [26]
    FERRA L, COSTANTINI M, SALING F, et al. Assisting engineering, training and operations for human spaceflight applications using eXtended Reality (XR) technologies[C]//Proceedings of the AR/VR for Space Programmes 2023. The Netherlands: ESA/ESTEC, 2023
    [27]
    HUSSEY K. NASA's "eyes on the solar system: " a real-time, 3D-interactive tool to teach the wonder of planetary science[C]//Proceedings of the American Geophysical Union, Fall Meeting 2014. San Francisco: AGU, 2014: ED33C-02
    [28]
    ACCOMAZZI A. Decades of transformation: evolution of the NASA astrophysics data system's infrastructure[OL]. arXiv preprint arXiv: 2401.09685, 2024
    [29]
    BLANCO-CUARESMA S, CIUCĂ I, ACCOMAZZI A, et al. Experimenting with large language models and vector embeddings in NASA SciX[OL]. arXiv preprint arXiv: 2312.14211, 2023
    [30]
    CROSBY N, STOYANOVA K, DAYAL R, et al. Development of a knowledge graph for dataset discovery and identification at a NASA data center[C]//Proceedings of the AGU Fall Meeting 2021. American Geophysical Union, 2021
    [31]
    CASTILLA-ARQUILLO R, PAZ-DELGADO G J, MADI M, et al. Virtual reality lab for rover navigation using mars datasets[C]//Proceedings of 2024 International Conference on Space Robotics (iSpaRo). Luxembourg: IEEE, 2024: 315-320
    [32]
    SOBUE S I, SASAKI S, KATO M, et al. KAGUYA (SELENE) education and public outreach activity[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 2010, 8(ists27): Tu_5-Tu_8
    [33]
    ZUO W, LI C L, ZHANG Z B, et al. China’s lunar and planetary data system: preserve and present reliable chang’e project and Tianwen-1 scientific data sets[J]. Space Science Reviews, 2021, 217(1): 88
    [34]
    李晨帆, 姚佩雯, 刘翔, 等. 面向中国深空探测任务的行星数据系统的设计与实现[J]. 遥感学报, 2021, 25(2): 599-613 doi: 10.11834/jrs.20210157

    LI Chenfan, YAO Peiwen, LIU Xiang, et al. Design and implementation of a planetary data system for Chinese deep space exploration[J]. National Remote Sensing Bulletin, 2021, 25(2): 599-613 doi: 10.11834/jrs.20210157
    [35]
    孙鹏举, 刘建忠, 王俊涛, 等. 数字月球云平台设计[J]. 矿物岩石地球化学通报, 2022, 41(1): 135-142

    SUN Pengju, LIU Jianzhong, WANG Juntao, et al. Design of digital lunar cloud-based platform[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2022, 41(1): 135-142
    [36]
    薄正. 空间基准统一的数字月球系统关键技术及应用研究[D]. 北京: 中国科学院大学(中国科学院空天信息创新研究院), 2022

    BO Zheng. Research on Key Technologies and Applications of Digital Lunar System with Unified Spatial Reference[D]. Beijing: University of Chinese Academy of Sciences, 2022
    [37]
    雷丹泓, 刘建忠, 朱凯, 等. 月球与行星科学多模态大模型的概念及应用初探[J]. 矿物岩石地球化学通报, 2024, 43(2): 343-351

    LEI Danhong, LIU Jianzhong, ZHU Kai, et al. A first look at the concept and application of multimodal large models for lunar and planetary science[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2024, 43(2): 343-351
    [38]
    赵之若, 王少宇, 王心宇, 等. 一种改进的火星车多光谱影像深度新颖目标探测方法[J]. 武汉大学学报·信息科学版, 2022, 47(8): 1328-1335,1348

    ZHAO Zhiruo, WANG Shaoyu, WANG Xinyu, et al. An improved deep novel target detection method for mars rover multispectral imagery[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8): 1328-1335,1348
    [39]
    GUO Z X, XU Y, LI D, et al. Martian dust devil detection based on improved faster R-CNN[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 7725-7737 doi: 10.1109/JSTARS.2024.3367848
    [40]
    JIANG S C, LIAN Z K, YUNG K L, et al. Automated detection of multitype landforms on mars using a light-weight deep learning-based detector[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(6): 5015-5029 doi: 10.1109/TAES.2022.3169454
    [41]
    GUO J L, ZHANG X Y, DONG Y P, et al. Terrain classification using mars raw images based on deep learning algorithms with application to wheeled planetary rovers[J]. Journal of Terramechanics, 2023, 108: 33-38 doi: 10.1016/j.jterra.2023.04.002
    [42]
    WANG X Y, QU H K, WANG Z Y, et al. Application of deep learning on quantitative analysis of binary solid dispersions by UV Raman spectroscopy for planetary exploration[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2025, 339: 126154 doi: 10.1016/j.saa.2025.126154
    [43]
    于国斌. 深空探测任务协同的系统工程方法应用及趋势[J]. 深空探测学报(中英文), 2021, 8(4): 407-415

    YU Guobin. Application and trend of model-based systems engineering methods for deep space exploration mission[J]. Journal of Deep Space Exploration, 2021, 8(4): 407-415
    [44]
    关锋, 葛平, 邵艳利, 等. 基于MBSE的月球科研站任务分析[J]. 航空工程进展, 2023, 14(3): 84-99

    GUAN Feng, GE Ping, SHAO Yanli, et al. Mission analysis of lunar scientific research station based on MBSE[J]. Advances in Aeronautical Science and Engineering, 2023, 14(3): 84-99
    [45]
    关锋, 葛平, 周国栋, 等. MBSE发展趋势与中国探月工程并行协同论证[J]. 空间科学学报, 2022, 42(2): 183-190 doi: 10.11728/cjss2022.02.210804082

    GUAN Feng, GE Ping, ZHOU Guodong, et al. Development trend of MBSE and investigation of concurrent collaborative demonstration for Chinese lunar exploration program[J]. Chinese Journal of Space Science, 2022, 42(2): 183-190 doi: 10.11728/cjss2022.02.210804082
    [46]
    刘继忠, 葛平, 康焱, 等. 深空探测科学目标谱系构建方案探索[J]. 深空探测学报(中英文), 2024, 11(1): 79-89

    LIU Jizhong, GE Ping, KANG Yan, et al. Study on the construction scheme of mega interconnected knowledge systems in deep space exploration[J]. Journal of Deep Space Exploration, 2024, 11(1): 79-89
    [47]
    于登云, 张哲, 泮斌峰, 等. 深空探测人工智能技术研究与展望[J]. 深空探测学报, 2020, 7(1): 11-23

    YU Dengyun, ZHANG Zhe, PAN Binfeng, et al. Development and trend of artificial intelligent in deep space exploration[J]. Journal of Deep Space Exploration, 2020, 7(1): 11-23
    [48]
    叶培建, 孟林智, 马继楠, 等. 深空探测人工智能技术应用及发展建议[J]. 深空探测学报, 2019, 6(4): 303-316,383

    YE Peijian, MENG Linzhi, MA Jinan, et al. Suggestions on artificial intelligence technology application and development in deep space exploration[J]. Journal of Deep Space Exploration, 2019, 6(4): 303-316,383
    [49]
    中国科学院月球与深空探测总体部. 嫦娥三号任务: 中科院勇挑重担[EB/OL]. (2013-12-03)[2025-07-31]. https://www.cas.cn/zt/kjzt/ce3/jzjd/201312/t20131203_3989407.shtml

    General Office of Lunar and Deep Space Exploration, CAS. Chang'e-3 mission: Chinese Academy of Sciences bravely shoulders the heavy responsibility[EB/OL]. (2013-12-03)[2025-07-31]. https://www.cas.cn/zt/kjzt/ce3/jzjd/201312/t20131203_3989407.shtml
    [50]
    中国气象局. 嫦娥卫星工程[EB/OL]. (2022-09-02)[2025-07-31]. https://www.cma.gov.cn/ztbd/2022zt/20220901/2022090104/202209010402/202209/t20220902_5067007.html

    China Meteorological Administration. Chang'e satellite project[EB/OL]. (2022-09-02)[2025-07-31]. https://www.cma.gov.cn/ztbd/2022zt/20220901/2022090104/202209010402/202209/t20220902_5067007.html
    [51]
    刘建军, 苏彦, 左维, 等. 中国首次火星探测任务地面应用系统[J]. 深空探测学报, 2018, 5(5): 414-425

    LIU Jianjun, SU Yan, ZUO Wei, et al. Ground research and application system of China's first mars exploration mission[J]. Journal of Deep Space Exploration, 2018, 5(5): 414-425
    [52]
    邢琰, 滕宝毅, 黄煌, 等. 自主智能微小机器人技术及其月面应用[J]. 空间控制技术与应用, 2024, 50(6): 64-72

    XING Yan, TENG Baoyi, HUANG Huang, et al. The technology of autonomous intelligent miniature robot and its application on lunar surface[J]. Aerospace Control and Application, 2024, 50(6): 64-72
    [53]
    郑燕红, 张高, 邓湘金, 等. 嫦娥六号月背采样封装系统设计与实现[J]. 中国科学: 技术科学, 2025, 55(7): 1182-1193 doi: 10.1360/SST-2024-0299

    ZHENG Yanhong, ZHANG Gao, DENG Xiangjin, et al. Design and implementation of the Chang’e-6 sampling and encapsulation system for the far side moon mission[J]. SCIENTIA SINICA Technologica, 2025, 55(7): 1182-1193 doi: 10.1360/SST-2024-0299
    [54]
    黄翔宇, 徐超, 郭敏文. 地外天体软着陆自主导航与控制技术研究进展[J]. 深空探测学报(中英文), 2024, 11(1): 3-15

    HUANG Xiangyu, XU Chao, GUO Minwen. Research progress of autonomous navigation and control technology for extraterrestrial soft landing[J]. Journal of Deep Space Exploration, 2024, 11(1): 3-15
    [55]
    张荣桥, 张熇, 刘建军, 等. 天问二号小天体探测任务[J]. 中国科学: 物理学 力学 天文学, 2025, 55(7): 6-15

    ZHANG Rongqiao, ZHANG He, LIU Jianjun, et al. Tianwen-2 small bodies exploration mission[J]. SCIENTIA SINICA Physica, Mechanica :Times New Roman;">& Astronomica, 2025, 55(7): 6-15
    [56]
    北京市科学技术委员会, 中关村科技园区管理委员会. 中国航天系统科学与工程研究院[EB/OL]. (2024-01-05)[2025-07-02]. https://kw.beijing.gov.cn/ztzl/rdzt/kpbj/kpjd/202401/t20240105_3799041.html

    Beijing Municipal Science and Technology Commission, Administrative Commission of Zhongguancun Science Park. China Aerospace Academy of Systems Science and Engineering[EB/OL]. (2024-01-05)[2025-07-02]. https://kw.beijing.gov.cn/ztzl/rdzt/kpbj/kpjd/202401/t20240105_3799041.html
    [57]
    杨宝光. 航天科普公益课为青少年开启“太空梦”[EB/OL]. (2020-09-27)[2025-07-02]. http://www.csu.cas.cn/gb/kxcb/202009/t20200927_5705948.html

    YANG Baoguang. Aerospace science outreach programs inspire the next generation's ‘space dreams’[EB/OL]. (2020-09-27)[2025-07-02]. http://www.csu.cas.cn/gb/kxcb/202009/t20200927_5705948.html
    [58]
    LIN D W, CRABTREE J, DILLO I, et al. The TRUST Principles for digital repositories[J]. Scientific Data, 2020, 7(1): 144 doi: 10.1038/s41597-020-0486-7
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article Views(82) PDF Downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return