Turn off MathJax
Article Contents
WANG Jianpeng, GUO Tong, CHEN Liang. Optimization of Fixed Honeycomb Panel Radiator Based on NSGA-II Algorithm (in Chinese). Chinese Journal of Space Science, 2025, 45(6): 1-10 doi: 10.11728/cjss2025.06.2024-0177
Citation: WANG Jianpeng, GUO Tong, CHEN Liang. Optimization of Fixed Honeycomb Panel Radiator Based on NSGA-II Algorithm (in Chinese). Chinese Journal of Space Science, 2025, 45(6): 1-10 doi: 10.11728/cjss2025.06.2024-0177

Optimization of Fixed Honeycomb Panel Radiator Based on NSGA-II Algorithm

doi: 10.11728/cjss2025.06.2024-0177 cstr: 32142.14.cjss.2024-0177
  • Received Date: 2024-12-03
  • Rev Recd Date: 2025-03-12
  • Available Online: 2025-03-19
  • Space radiator is an important part of aerospace thermal control system. In order to meet the heat dissipation and weight reduction requirements of a low-orbit satellite, an optimization strategy of fixed honeycomb plate space radiator has been proposed with the help of inverse design concept, and the root cause of space radiator performance improvement has been expounded from the perspective of macro and micro heat transfer. Taking the layout parameters of heat pipes and fluid loop as the design variables, Kriging was used to construct the surrogate model, and schemes α and β were obtained by iterative optimization based on NSGA-II algorithm. The simulation results show that the optimization schemes improve the surface temperature uniformity by 3.09 K and 4.98 K respectively, and improve the heat dissipation capacity by 18.7% and 28.8% on the basis of reducing the mass ratio by about 1/4. The on-orbit temperature levels of satellite were compared and analyzed. The verification results show that the optimal design of the radiator makes the spacecraft thermal control system have greater temperature control margin and significant weight reduction advantages, which is more conducive to the development and expansion of spacecraft on-orbit tasks.

     

  • loading
  • [1]
    LI C D, LIANG Z Q, XIAO H Y, et al. Synthesis of ZnO/Zn2SiO4/SiO2 composite pigments with enhanced reflectance and radiation-stability under low-energy proton irradiation[J]. Materials Letters, 2010, 64(18): 1972-1974 doi: 10.1016/j.matlet.2010.06.027
    [2]
    LIU Hong, ZHANG Xiaofeng, FENG Jianchao, et al. Application of precision thermal control techniques in Taiji-1 satellite[J]. Chinese Journal of Space Science, 2021, 41(2): 337-341 (刘红, 张晓峰, 冯建朝, 等. 精密热控技术在太极一号卫星上的应用[J]. 空间科学学报, 2021, 41(2): 337-341

    LIU Hong, ZHANG Xiaofeng, FENG Jianchao, et al. Application of precision thermal control techniques in Taiji-1 satellite[J]. Chinese Journal of Space Science, 2021, 41(2): 337-341
    [3]
    LI Yijian, LI Chunzhi, WANG Runnan, et al. Thermal design of deployable antenna for high-power space-borne SAR[J]. Modern Radar, 2021, 43(12): 45-51 (李亦健, 李春志, 王润楠, 等. 某高功率星载SAR可展开天线的热设计[J]. 现代雷达, 2021, 43(12): 45-51

    LI Yijian, LI Chunzhi, WANG Runnan, et al. Thermal design of deployable antenna for high-power space-borne SAR[J]. Modern Radar, 2021, 43(12): 45-51
    [4]
    LIU Qingzhi, HUANG Lei, REN Hongyan, et al. Thermal design and test of high power satellite with deployable radiator[J]. Spacecraft Engineering, 2022, 31(4): 54-58 (刘庆志, 黄磊, 任红艳, 等. 应用可展开辐射器的大功率卫星热设计与验证[J]. 航天器工程, 2022, 31(4): 54-58

    LIU Qingzhi, HUANG Lei, REN Hongyan, et al. Thermal design and test of high power satellite with deployable radiator[J]. Spacecraft Engineering, 2022, 31(4): 54-58
    [5]
    FENG Maolong, LAI Xiaoyi, HAN Haiying, et al. Study on radiation performance of fluid loop-heat pipe coupled radiator for China space station[J]. Aerospace Shanghai(Chinese :Times New Roman;">& English), 2023, 40(5): 88-93 (丰茂龙, 来霄毅, 韩海鹰, 等. 空间站流体回路/热管耦合式热辐射器性能研究[J]. 上海航天(中英文), 2023, 40(5): 88-93

    FENG Maolong, LAI Xiaoyi, HAN Haiying, et al. Study on radiation performance of fluid loop-heat pipe coupled radiator for China space station[J]. Aerospace Shanghai(Chinese & English), 2023, 40(5): 88-93
    [6]
    ARSLANTURK C. Optimization of space radiators accounting for variable thermal conductivity and base-to-fin radiation interaction[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232(1): 121-130 doi: 10.1177/0954410016673091
    [7]
    ZHANG Ningli, JIANG Jun. Mean method for estimating heat transfer efficiency of space radiator[J]. Journal of Harbin Institute of Technology, 2008, 40(9): 1509-1512 (张宁莉, 姜军. 估算空间辐射器传热效率的平均法[J]. 哈尔滨工业大学学报, 2008, 40(9): 1509-1512

    ZHANG Ningli, JIANG Jun. Mean method for estimating heat transfer efficiency of space radiator[J]. Journal of Harbin Institute of Technology, 2008, 40(9): 1509-1512
    [8]
    TOURNIER J M P, EL-GENK M S. Liquid metal loop and heat pipe radiator for space reactor power system[J]. Journal of Propulsion and Power, 2006, 22(5): 1117-1134 doi: 10.2514/1.20031
    [9]
    LIU Xin, LIANG Xingang. Optimization design and analysis of heat transfer for space radiator[J]. Journal of Astronautics, 2016, 37(5): 605-611 (刘欣, 梁新刚. 太空辐射器传热优化设计及分析[J]. 宇航学报, 2016, 37(5): 605-611

    LIU Xin, LIANG Xingang. Optimization design and analysis of heat transfer for space radiator[J]. Journal of Astronautics, 2016, 37(5): 605-611
    [10]
    CHENG Xuetao, XU Xianghua, LIANG Xingang. Application of entransy to optimization design of parallel thermal network of thermal control system in spacecraft[J]. Science China Technological Sciences, 2011, 41(4): 507-514 (程雪涛, 徐向华, 梁新刚. (火积)在航天器热控系统并联热网络优化中的应用[J]. 中国科学: 技术科学, 2011, 41(4): 507-514

    CHENG Xuetao, XU Xianghua, LIANG Xingang. Application of entransy to optimization design of parallel thermal network of thermal control system in spacecraft[J]. Science China Technological Sciences, 2011, 41(4): 507-514
    [11]
    WANG Yuying, LI Yunze, LIU Dongxiao. Optimized design of heat insulation layers’ thickness and radiator surfaces for nano-satellite[J]. Spacecraft Engineering, 2010, 19(2): 46-51 (王玉莹, 李运泽, 刘东晓. 纳卫星隔热层厚度与散热面面积优化设计[J]. 航天器工程, 2010, 19(2): 46-51

    WANG Yuying, LI Yunze, LIU Dongxiao. Optimized design of heat insulation layers’ thickness and radiator surfaces for nano-satellite[J]. Spacecraft Engineering, 2010, 19(2): 46-51
    [12]
    YAO Liang, WANG Suming, ZHANG Hongna, et al. Design and analysis of “contact-heat conduction” heat pipe radiator[J]. Chinese Space Science and Technology, 2023, 43(3): 81-92 (姚良, 王苏明, 张红娜, 等. "接触–导热"式热管辐射散热器设计与分析[J]. 中国空间科学技术, 2023, 43(3): 81-92

    YAO Liang, WANG Suming, ZHANG Hongna, et al. Design and analysis of “contact-heat conduction” heat pipe radiator[J]. Chinese Space Science and Technology, 2023, 43(3): 81-92
    [13]
    LU P, YAN X D, WU R, et al. Numerical simulation and conceptual design of an MW-grade space heat pipe radiator[J]. Numerical Heat Transfer, Part A: Applications: An International Journal of Computation and Methodology, 2023, 84(4): 400-411
    [14]
    EBADI A, BAUTISTA J C C, WHITE C M, et al. A heat transfer model of fully developed turbulent channel flow[J]. Journal of Fluid Mechanics, 2020, 884: R7 doi: 10.1017/jfm.2019.1006
    [15]
    CHENG X T, XU X H, LIANG X G. Homogenization of temperature field and temperature gradient field[J]. Science in China Series E: Technological Sciences, 2009, 52(10): 2937-2942 doi: 10.1007/s11431-009-0244-8
    [16]
    LI Wei, XIE Zonghong, ZHAO Jian. The research on the out-of-plane equivalent thermal conductivity of honeycomb cores[J]. Vacuum :Times New Roman;">& Cryogenics, 2010, 16(3): 162-166 (李玮, 谢宗蕻, 赵剑. 蜂窝芯体面外方向导热系数等效研究[J]. 真空与低温, 2010, 16(3): 162-166

    LI Wei, XIE Zonghong, ZHAO Jian. The research on the out-of-plane equivalent thermal conductivity of honeycomb cores[J]. Vacuum & Cryogenics, 2010, 16(3): 162-166
    [17]
    HAN Zhonghua. Kriging surrogate model and its application to design optimization: a review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3197-3225 (韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11): 3197-3225

    HAN Zhonghua. Kriging surrogate model and its application to design optimization: a review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3197-3225
    [18]
    LIU Xiaolu, CHEN Yingwu, JING Xianrong, et al. Optimized Latin hypercube sampling method and its application[J]. Journal of National University of Defense Technology, 2011, 33(5): 73-77 (刘晓路, 陈英武, 荆显荣, 等. 优化拉丁方试验设计方法及其应用[J]. 国防科技大学学报, 2011, 33(5): 73-77

    LIU Xiaolu, CHEN Yingwu, JING Xianrong, et al. Optimized Latin hypercube sampling method and its application[J]. Journal of National University of Defense Technology, 2011, 33(5): 73-77
    [19]
    DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197 doi: 10.1109/4235.996017
    [20]
    QI Laibin. Statistics analysis and fuzzy comprehensive evaluation of Likert scale[J]. Shandong Science, 2006, 19(2): 18-23,28 (亓莱滨. 李克特量表的统计学分析与模糊综合评判[J]. 山东科学, 2006, 19(2): 18-23,28

    QI Laibin. Statistics analysis and fuzzy comprehensive evaluation of Likert scale[J]. Shandong Science, 2006, 19(2): 18-23,28
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article Metrics

    Article Views(245) PDF Downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return