Turn off MathJax
Article Contents
CAO Qingpeng, HUANG Liupeng, WEI Chunbo, GU Defeng. Calibration of Thermospheric Atmospheric Density Empirical Model Based on SegRNN (in Chinese). Chinese Journal of Space Science, 2025, 45(6): 1-11 doi: 10.11728/cjss2025.06.2024-0179
Citation: CAO Qingpeng, HUANG Liupeng, WEI Chunbo, GU Defeng. Calibration of Thermospheric Atmospheric Density Empirical Model Based on SegRNN (in Chinese). Chinese Journal of Space Science, 2025, 45(6): 1-11 doi: 10.11728/cjss2025.06.2024-0179

Calibration of Thermospheric Atmospheric Density Empirical Model Based on SegRNN

doi: 10.11728/cjss2025.06.2024-0179 cstr: 32142.14.cjss.2024-0179
  • Received Date: 2024-12-05
  • Rev Recd Date: 2025-05-25
  • Available Online: 2025-05-26
  • Atmospheric drag is the largest non-gravitational perturbation experienced by low-orbit satellites, and the main source of error in calculating atmospheric drag stems from inaccuracies in the empirical models of thermospheric density. Currently, these empirical models generally exhibit errors exceeding 30%. To enhance the prediction accuracy of these models, a calibration method for thermospheric density empirical models based on Segment Recurrent Neural Network (SegRNN) is proposed. This method employs the segmentation and parallelism strategies of SegRNN for model training and inference, mitigating the issues of error accumulation and gradient instability that arise from excessive iterations in traditional RNNs. By analyzing the relationship between atmospheric density and external environmental parameters such as Ap, F10.7, and F10.7a, an improved neural network architecture named SegRNN with Residual Block is proposed. This architecture introduces external environmental parameters as dynamic covariates and employs a residual block to encode these covariates, thereby extracting density-related information for the prediction period and further enhancing the prediction accuracy of SegRNN. Finally, the density data derived from the onboard accelerometer of the GRACE (Gravity Recovery and Climate Experiment) satellite is used to calibrate the NRLMSIS 2.0 model. The results indicate that the original error of the NRLMSIS 2.0 model is 31.3%. After calibration with SegRNN, the error was reduced to 8.0%. By introducing dynamic covariates, the model error was further reduced to 7.2%. Ultimately, the error of the final calibrated model decreased by 24.1%, demonstrating significant calibration effects.

     

  • loading
  • [1]
    LI Min. Research on Muti-GNSS Precise Orbit Determination Theory and Application[D]. Wuhan: Wuhan University, 2011: 63
    [2]
    LIU Lin. Orbit Theory of Spacecraft[M]. Beijing: National Defense Industry Press, 2000
    [3]
    MONTENBRUCK O, GILL E, LUTZE F. Satellite orbits: models, methods, and applications[J]. Applied Mechanics Reviews, 2002, 55(2): B27-B28 doi: 10.1115/1.1451162
    [4]
    LIU Shushi, GONG J C, LIU S Q, et al. Thermospheric density during geomagnetic storm based on EOF analysis[J]. Chinese Journal of Geophysics, 2013, 56(10): 3236-3245
    [5]
    JACCHIA L G. Revised static models of the thermosphere and exosphere with empirical temperature profiles[J]. Sao Special Report, 1971, 313(20): 3138-3144
    [6]
    PICONE J M, HEDIN A E, DROB D P, et al. NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues[J]. Journal of Geophysical Research, Space Physics, 2002, 107(A12): SIA 15-1-SIA 15-16
    [7]
    BRUINSMA S. The DTM-2013 thermosphere model[J]. Journal of Space Weather and Space Climate, 2015, 5: A1 doi: 10.1051/swsc/2015001
    [8]
    BRUINSMA S, THUILLIER G, BARLIER F. The DTM-2000 empirical thermosphere model with new data assimilation and constraints at lower boundary: accuracy and properties[J]. Journal of Atmospheric and Solar Terrestrial Physics, 2003, 65(9): 1053-1070 doi: 10.1016/S1364-6826(03)00137-8
    [9]
    BOWMAN B R, TOBISKA W K, MARCOS F A. A new empirical thermospheric density model JB2006 using new solar indices[C]//AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Keystone: AIAA, 2006: 6166
    [10]
    BOWMAN B R, TOBISKA W K, MARCOS F A, et al. A new empirical thermospheric density model JB2008 using new solar and geomagnetic indices[C]//AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Honolulu: AIAA, 2008: 6438
    [11]
    EMMERT J T. Thermospheric mass density: a review[J]. Advances in Space Research, 2015, 56(5): 773-824 doi: 10.1016/j.asr.2015.05.038
    [12]
    STORZ M F, BOWMAN B R, BRANSON M J I, et al. High accuracy satellite drag model(HASDM)[J]. Advances in Space Research, 2005, 36(12): 2497-2505 doi: 10.1016/j.asr.2004.02.020
    [13]
    CASALI S J, BARKER W N. Dynamic Calibration Atmosphere (DCA) for the high accuracy satellite drag model (HASDM)[C]//AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Monterey: AIAA, 2013. DOI: 10.2514/6.2002-4888
    [14]
    LI Wenwen, LI Min, SHI Chuang, et al. Thermosphere mass density derivation using on-board accelerometer observations from GRACE satellites[J]. Chinese Journal of Geophysics, 2016, 59(9): 3159-3174
    [15]
    DOORNBOS E, KLINKRAD H, VISSER P. Atmospheric density calibration using satellite drag observations[J]. Advances in Space Research, 2005, 36(3): 515-521 doi: 10.1016/j.asr.2005.02.009
    [16]
    CEFOLA P J, PROULX R J, NAZARENKO A I, et al. Atmospheric density correction using two line element sets as the observation data[J]. Advances in the Astronautical Sciences, 2004, 116: 1953-1978
    [17]
    BERGSTROM S E, PROULX R J, CEFOLA P J. Atmospheric density correction using observational data[C]//AIAA/AAS Astrodynamics Specialist Conference and Exhibit. Monterey: AIAA, 2002: 4738
    [18]
    CHEN Xuxing, HU Xiong, XIAO Chunying, et al. Correction method of the low earth orbital neutral density prediction based on the satellites data and NRLMSISE-00 model[J]. Chinese Journal of Geophysics, 2013, 56(10): 3246-3254
    [19]
    PÉREZ D, BEVILACQUA R. Neural Network based calibration of atmospheric density models[J]. Acta Astronautica, 2015, 110: 58-76 doi: 10.1016/j.actaastro.2014.12.018
    [20]
    PÉREZ D, WOHLBERG B, LOVELL T A, et al. Orbit-centered atmospheric density prediction using artificial neural networks[J]. Acta Astronautica, 2014, 98: 9-23 doi: 10.1016/j.actaastro.2014.01.007
    [21]
    CHEN H R, LIU H X, HANADA T. Storm-time atmospheric density modeling using neural networks and its application in orbit propagation[J]. Advances in Space Research, 2014, 53(3): 558-567 doi: 10.1016/j.asr.2013.11.052
    [22]
    ZHANG Y, YU J J, CHEN J Y, et al. An empirical atmospheric density calibration model based on long short-term memory neural network[J]. Atmosphere, 2021, 12(7): 925 doi: 10.3390/atmos12070925
    [23]
    HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780 doi: 10.1162/neco.1997.9.8.1735
    [24]
    ZHOU H Y, ZHANG S H, PENG J Q, et al. Informer: Beyond efficient transformer for long sequence time-series forecasting[C]//Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2021: 11106-11115
    [25]
    LIN S S, LIN W W, WU W T, et al. SegRNN: Segment recurrent neural network for long-term time series forecasting[OL]. (2023-08-22) [2024.12.30]. https://arxiv.org/abs/2308.11200
    [26]
    EMMERT J T, DROB D P, PICONE J M, et al. NRLMSIS 2.0: a whole‐atmosphere empirical model of temperature and neutral species densities[J]. Earth and Space Science, 2021, 8(3): e2020EA001321 doi: 10.1029/2020EA001321
    [27]
    VAN DEN IJSSEL J, VISSER P. Performance of GPS-based accelerometry: CHAMP and GRACE[J]. Advances in Space Research, 2007, 39(10): 1597-1603 doi: 10.1016/j.asr.2006.12.027
    [28]
    TAPPING K F. The 10.7 cm solar radio flux (F10.7)[J]. Space Weather-the International Journal of Research :Times New Roman;">& Applications, 2013, 11(7): 394-406
    [29]
    BARTELS J. The geomagnetic measures for the time-variations of solar corpuscular radiation, described for use in correlation studies in other geophysical fields[J]. Geomagnetism, 2013: 227-236
    [30]
    KNIPP D J, TOBISKA W K, EMERY B A. Direct and indirect thermospheric heating sources for solar cycles 21-23[J]. Solar Physics, 2004, 224(1/2): 495-505
    [31]
    GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks[J]. Journal of Machine Learning Research, 2011, 15: 315-323
    [32]
    SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15(1): 1929-1958
    [33]
    WU D X, WANG Y S, XIA S T, et al. Skip connections matter: On the transferability of adversarial examples generated with resnets[OL]. (2020-02-14) [2024.12. 30]. https://arxiv.org/abs/2002.05990
    [34]
    PASZKE A, GROSS S, MASSA F, et al. Pytorch: an imperative style, high-performance deep learning library[J]. Neural Information Processing Systems, 2019, 32: 8026-8037
    [35]
    CHUNG J Y, GULCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[J]. Eprint Arxiv, 2014. DOI: 10.48550/arXiv.1412.3555
    [36]
    KINGMA D P, BA J. Adam: A method for stochastic optimization[OL]. (2017-01-30) [2024-12-25]. https://arxiv.org/abs/1412.6980
    [37]
    HAN L, YE H J, ZHAN D C. The capacity and robustness trade-off: Revisiting the channel independent strategy for multivariate time series forecasting[J]. IEEE Transactions on Automatic Control, 2024, 36(11): 7129-7142
    [38]
    WANG Hongbo, ZHANG Mingjiang, XIONG Jianning. Effects of solar extreme ultraviolet radiation on thermospheric neutral density[J]. Chinese Journal of Space Science, 2023, 43(1): 87-100 (汪宏波, 张明江, 熊建宁. 太阳极紫外辐射对热层大气密度的影响[J]. 空间科学学报, 2023, 43(1): 87-100 doi: 10.11728/cjss2023.01.211217130

    WANG Hongbo, ZHANG Mingjiang, XIONG Jianning. Effects of solar extreme ultraviolet radiation on thermospheric neutral density[J]. Chinese Journal of Space Science, 2023, 43(1): 87-100 doi: 10.11728/cjss2023.01.211217130
    [39]
    WANG Xin, MIAO Juan, LIU Siqing, et al. Characteristics analysis of thermospheric density response during the different intensity of geomagnetic storms[J]. Chinese Journal of Space Science, 2020, 40(1): 28-41 (王昕, 苗娟, 刘四清, 等. 不同强度磁暴期间热层大气密度响应特征分析[J]. 空间科学学报, 2020, 40(1): 28-41 doi: 10.11728/cjss2020.01.028

    WANG Xin, MIAO Juan, LIU Siqing, et al. Characteristics analysis of thermospheric density response during the different intensity of geomagnetic storms[J]. Chinese Journal of Space Science, 2020, 40(1): 28-41 doi: 10.11728/cjss2020.01.028
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article Views(283) PDF Downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return