摘要:
由中国武汉电离层台站和澳大利亚Hobart台站的电离层F2层临界频率(f0F2)的资料,利用三层前向反馈神经网络(BP网络),提出一种提前24 h预测,f0F2的方法,该方法以前5天观测的,f0F2数据拟合的5个系数以及太阳活动参数作为输入,以当天24 h的,f0F2作为输出对网络进行训练,训练好的网络可以实现对,f0F2提前24 h的预报.预测结果显示,利用神经网络预测的,f0F2与实际观测结果变化趋势较一致,并且比IRI的计算结果更加准确.误差分析表明,在南半球Hobart (-42.9°,147.3°)台站比中国武汉站(30.4°,114.3°)的结果要好,在低年比高年要好,在冬夏季节比春秋季节稍好.本文说明利用神经网络对电离层参量进行预报是一种切实可行的方法.