2014, 34(4): 415-425.
doi: 10.11728/cjss2014.04.415
Abstract:
Fabry-Perot Interferometer (FPI) is widely used for the wind observation of the middle and upper atmosphere. The wind retrieval algorithm of ground-based FPI has been studied globally for a few years, but a detailed analysis of retrieval precision factors has not been reported yet. Currently, in China, a few studies of FPI wind retrieval based on simulation data have been carried out. However, the studies did not make a detailed analysis of wind retrieval factors yet, such as the airglow intensity, the number of interference fringes, the fringe center and the focal length. In this paper, wind velocity retrieval of the middle and upper atmosphere is based on the ground-based observation mode (one direction at zenith and four cardinal directions with 45° zenith angle) using FPI facility from the Meridian Space Weather Monitoring Project, which included the pre-processing, the fringe center determination, the fringe radius calculation and the wind velocity retrieval. For validation, the wind parameter of 8 days (May 6-13, 2010) retrieved from observation data using ten fringes were compared with the FPI wind products with an average deviation of 2.7m·s-1 (557.7nm airglow), 5.5m·s-1 (630.0nm airglow) and 7.7m·s-1 (892.0nm airglow) respectively. Furthermore, the detailed analysis of the influencing factors mentioned above was also carried out. The results demonstrate that the stronger airglow intensity is, the higher outer fringe radius calculation precision can be obtained, and more usable fringes can be chosen. Besides, the center determination deviation with ± 2pixel (using 5 interference fringes) and ± 1pixel (using 10 interference fringes) and the focal length deviation with ± 10mm have negligible effects on wind retrieval precision, but can cause large retrieval errors when the deviations exceed the ranges mentioned above.